Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Blood Adv ; 7(11): 2449-2458, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36521030

RESUMO

The POLARIX trial demonstrated the superiority of polatuzumab vedotin (Pola) over vincristine in the rituximab-cyclophosphamide-doxorubicin-vincristine-prednisone (R-CHOP) regimen for large B-cell lymphomas, but it is unknown whether Pola can be safely incorporated into intensified regimens (eg, dose-adjusted [DA]-EPOCH-R [etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab]) typically used for the highest risk histologies. This was a single-center, open-label, prospective clinical trial of 6 cycles of Pola-DA-EPCH-R (vincristine omitted) in aggressive large B-cell lymphomas. The primary end point was to estimate the safety of Pola-DA-EPCH-R as measured by the rate of dose-limiting toxicities (DLTs) in the first 2 cycles with prespecified suspension rules. Secondary and exploratory end points included efficacy and correlation with circulating tumor DNA (ctDNA) levels. We enrolled 18 patients on study, and with only 3 DLTs observed, the study met its primary end point for safety. There were 5 serious adverse events, including grade 3 febrile neutropenia (3, 17%), grade 3 colonic perforation in the setting of diverticulitis, and grade 5 sepsis/typhlitis. Among 17 evaluable patients, the best overall response rate was 100%, and the complete response rate was 76%. With a median follow-up of 12.9 months, 12-month event-free survival was 72%, and 12-month overall survival was 94%. No patient with undetectable ctDNA at the end of treatment has relapsed to date. Using Pola to replace vincristine in the DA-EPOCH-R regimen met its primary safety end point. These data support the further evaluation and use of this approach in histologies where the potential benefit of both an intensified regimen and Pola may be desired. This trial was registered at www.clinicaltrials.gov as #NCT04231877.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Ciclofosfamida/efeitos adversos , Doxorrubicina/efeitos adversos , Etoposídeo/efeitos adversos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Prednisona/efeitos adversos , Estudos Prospectivos , Rituximab/efeitos adversos , Vincristina/efeitos adversos
2.
BMC Med Genet ; 19(1): 176, 2018 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-30268105

RESUMO

BACKGROUND: Hereditary cancer screening (HCS) for germline variants in the 3' exons of PMS2, a mismatch repair gene implicated in Lynch syndrome, is technically challenging due to homology with its pseudogene PMS2CL. Sequences of PMS2 and PMS2CL are so similar that next-generation sequencing (NGS) of short fragments-common practice in multigene HCS panels-may identify the presence of a variant but fail to disambiguate whether its origin is the gene or the pseudogene. Molecular approaches utilizing longer DNA fragments, such as long-range PCR (LR-PCR), can definitively localize variants in PMS2, yet applying such testing to all samples can have logistical and economic drawbacks. METHODS: To address these drawbacks, we propose and characterize a reflex workflow for variant discovery in the 3' exons of PMS2. We cataloged the natural variation in PMS2 and PMS2CL in 707 samples and designed hybrid-capture probes to enrich the gene and pseudogene with equal efficiency. For PMS2 exon 11, NGS reads were aligned, filtered using gene-specific variants, and subject to standard diploid variant calling. For PMS2 exons 12-15, the NGS reads were permissively aligned to PMS2, and variant calling was performed with the expectation of observing four alleles (i.e., tetraploid calling). In this reflex workflow, short-read NGS identifies potentially reportable variants that are then subject to disambiguation via LR-PCR-based testing. RESULTS: Applying short-read NGS screening to 299 HCS samples and cell lines demonstrated >99% analytical sensitivity and >99% analytical specificity for single-nucleotide variants (SNVs) and short insertions and deletions (indels), as well as >96% analytical sensitivity and >99% analytical specificity for copy-number variants. Importantly, 92% of samples had resolved genotypes from short-read NGS alone, with the remaining 8% requiring LR-PCR reflex. CONCLUSION: Our reflex workflow mitigates the challenges of screening in PMS2 and serves as a guide for clinical laboratories performing multigene HCS. To facilitate future exploration and testing of PMS2 variants, we share the raw and processed LR-PCR data from commercially available cell lines, as well as variant frequencies from a diverse patient cohort.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Detecção Precoce de Câncer/métodos , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase/métodos , Pseudogenes , Alelos , Linhagem Celular Tumoral , Neoplasias Colorretais Hereditárias sem Polipose/diagnóstico , Neoplasias Colorretais Hereditárias sem Polipose/metabolismo , Detecção Precoce de Câncer/instrumentação , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Endonuclease PMS2 de Reparo de Erro de Pareamento/análise , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Proteínas de Neoplasias/análise , Proteínas de Neoplasias/metabolismo , Reação em Cadeia da Polimerase/normas , Sensibilidade e Especificidade
3.
BMC Med Genomics ; 11(1): 90, 2018 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-30340588

RESUMO

BACKGROUND: Noninvasive prenatal screening (NIPS) of common aneuploidies using cell-free DNA from maternal plasma is part of routine prenatal care and is widely used in both high-risk and low-risk patient populations. High specificity is needed for clinically acceptable positive predictive values. Maternal copy-number variants (mCNVs) have been reported as a source of false-positive aneuploidy results that compromises specificity. METHODS: We surveyed the mCNV landscape in 87,255 patients undergoing NIPS. We evaluated both previously reported and novel algorithmic strategies for mitigating the effects of mCNVs on the screen's specificity. Further, we analyzed the frequency, length, and positional distribution of CNVs in our large dataset to investigate the curation of novel fetal microdeletions, which can be identified by NIPS but are challenging to interpret clinically. RESULTS: mCNVs are common, with 65% of expecting mothers harboring an autosomal CNV spanning more than 200 kb, underscoring the need for robust NIPS analysis strategies. By analyzing empirical and simulated data, we found that general, outlier-robust strategies reduce the rate of mCNV-caused false positives but not as appreciably as algorithms specifically designed to account for mCNVs. We demonstrate that large-scale tabulation of CNVs identified via routine NIPS could be clinically useful: together with the gene density of a putative microdeletion region, we show that the region's relative tolerance to duplications versus deletions may aid the interpretation of microdeletion pathogenicity. CONCLUSIONS: Our study thoroughly investigates a common source of NIPS false positives and demonstrates how to bypass its corrupting effects. Our findings offer insight into the interpretation of NIPS results and inform the design of NIPS algorithms suitable for use in screening in the general obstetric population.


Assuntos
Variações do Número de Cópias de DNA , Diagnóstico Pré-Natal/métodos , Feminino , Deleção de Genes , Humanos , Testes para Triagem do Soro Materno , Gravidez , Sequenciamento Completo do Genoma
4.
Clin Chem ; 64(7): 1063-1073, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29760218

RESUMO

BACKGROUND: By identifying pathogenic variants across hundreds of genes, expanded carrier screening (ECS) enables prospective parents to assess the risk of transmitting an autosomal recessive or X-linked condition. Detection of at-risk couples depends on the number of conditions tested, the prevalence of the respective diseases, and the screen's analytical sensitivity for identifying disease-causing variants. Disease-level analytical sensitivity is often <100% in ECS tests because copy number variants (CNVs) are typically not interrogated because of their technical complexity. METHODS: We present an analytical validation and preliminary clinical characterization of a 235-gene sequencing-based ECS with full coverage across coding regions, targeted assessment of pathogenic noncoding variants, panel-wide CNV calling, and specialized assays for technically challenging genes. Next-generation sequencing, customized bioinformatics, and expert manual call review were used to identify single-nucleotide variants, short insertions and deletions, and CNVs for all genes except FMR1 and those whose low disease incidence or high technical complexity precluded novel variant identification or interpretation. RESULTS: Screening of 36859 patients' blood or saliva samples revealed the substantial impact on fetal disease-risk detection attributable to novel CNVs (9.19% of risk) and technically challenging conditions (20.2% of risk), such as congenital adrenal hyperplasia. Of the 7498 couples screened, 335 were identified as at risk for an affected pregnancy, underscoring the clinical importance of the test. Validation of our ECS demonstrated >99% analytical sensitivity and >99% analytical specificity. CONCLUSIONS: Validated high-fidelity identification of different variant types-especially for diseases with complicated molecular genetics-maximizes at-risk couple detection.


Assuntos
Variações do Número de Cópias de DNA , Éxons , Triagem de Portadores Genéticos , Estudos de Coortes , Humanos , Mutação INDEL , Polimorfismo de Nucleotídeo Único
5.
Genet Med ; 20(1): 55-63, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28640244

RESUMO

PurposeThe recent growth in pan-ethnic expanded carrier screening (ECS) has raised questions about how such panels might be designed and evaluated systematically. Design principles for ECS panels might improve clinical detection of at-risk couples and facilitate objective discussions of panel choice.MethodsGuided by medical-society statements, we propose a method for the design of ECS panels that aims to maximize the aggregate and per-disease sensitivity and specificity across a range of Mendelian disorders considered serious by a systematic classification scheme. We evaluated this method retrospectively using results from 474,644 de-identified carrier screens. We then constructed several idealized panels to highlight strengths and limitations of different ECS methodologies.ResultsBased on modeled fetal risks for "severe" and "profound" diseases, a commercially available ECS panel (Counsyl) is expected to detect 183 affected conceptuses per 100,000 US births. A screen's sensitivity is greatly impacted by two factors: (i) the methodology used (e.g., full-exon sequencing finds more affected conceptuses than targeted genotyping) and (ii) the detection rate of the screen for diseases with high prevalence and complex molecular genetics (e.g., fragile X syndrome).ConclusionThe described approaches enable principled, quantitative evaluation of which diseases and methodologies are appropriate for pan-ethnic expanded carrier screening.


Assuntos
Triagem de Portadores Genéticos/métodos , Triagem de Portadores Genéticos/normas , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Testes Genéticos/normas , Genômica/métodos , Genômica/normas , Fidelidade a Diretrizes , Humanos , Reprodutibilidade dos Testes
7.
PeerJ ; 5: e3046, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243543

RESUMO

The past two decades have brought many important advances in our understanding of the hereditary susceptibility to cancer. Numerous studies have provided convincing evidence that identification of germline mutations associated with hereditary cancer syndromes can lead to reductions in morbidity and mortality through targeted risk management options. Additionally, advances in gene sequencing technology now permit the development of multigene hereditary cancer testing panels. Here, we describe the 2016 revision of the Counsyl Inherited Cancer Screen for detecting single-nucleotide variants (SNVs), short insertions and deletions (indels), and copy number variants (CNVs) in 36 genes associated with an elevated risk for breast, ovarian, colorectal, gastric, endometrial, pancreatic, thyroid, prostate, melanoma, and neuroendocrine cancers. To determine test accuracy and reproducibility, we performed a rigorous analytical validation across 341 samples, including 118 cell lines and 223 patient samples. The screen achieved 100% test sensitivity across different mutation types, with high specificity and 100% concordance with conventional Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA). We also demonstrated the screen's high intra-run and inter-run reproducibility and robust performance on blood and saliva specimens. Furthermore, we showed that pathogenic Alu element insertions can be accurately detected by our test. Overall, the validation in our clinical laboratory demonstrated the analytical performance required for collecting and reporting genetic information related to risk of developing hereditary cancers.

8.
PLoS Biol ; 13(11): e1002307, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26587879

RESUMO

Reprogramming of a gene's expression pattern by acquisition and loss of sequences recognized by specific regulatory RNA binding proteins may be a major mechanism in the evolution of biological regulatory programs. We identified that RNA targets of Puf3 orthologs have been conserved over 100-500 million years of evolution in five eukaryotic lineages. Focusing on Puf proteins and their targets across 80 fungi, we constructed a parsimonious model for their evolutionary history. This model entails extensive and coordinated changes in the Puf targets as well as changes in the number of Puf genes and alterations of RNA binding specificity including that: 1) Binding of Puf3 to more than 200 RNAs whose protein products are predominantly involved in the production and organization of mitochondrial complexes predates the origin of budding yeasts and filamentous fungi and was maintained for 500 million years, throughout the evolution of budding yeast. 2) In filamentous fungi, remarkably, more than 150 of the ancestral Puf3 targets were gained by Puf4, with one lineage maintaining both Puf3 and Puf4 as regulators and a sister lineage losing Puf3 as a regulator of these RNAs. The decrease in gene expression of these mRNAs upon deletion of Puf4 in filamentous fungi (N. crassa) in contrast to the increase upon Puf3 deletion in budding yeast (S. cerevisiae) suggests that the output of the RNA regulatory network is different with Puf4 in filamentous fungi than with Puf3 in budding yeast. 3) The coregulated Puf4 target set in filamentous fungi expanded to include mitochondrial genes involved in the tricarboxylic acid (TCA) cycle and other nuclear-encoded RNAs with mitochondrial function not bound by Puf3 in budding yeast, observations that provide additional evidence for substantial rewiring of post-transcriptional regulation. 4) Puf3 also expanded and diversified its targets in filamentous fungi, gaining interactions with the mRNAs encoding the mitochondrial electron transport chain (ETC) complex I as well as hundreds of other mRNAs with nonmitochondrial functions. The many concerted and conserved changes in the RNA targets of Puf proteins strongly support an extensive role of RNA binding proteins in coordinating gene expression, as originally proposed by Keene. Rewiring of Puf-coordinated mRNA targets and transcriptional control of the same genes occurred at different points in evolution, suggesting that there have been distinct adaptations via RNA binding proteins and transcription factors. The changes in Puf targets and in the Puf proteins indicate an integral involvement of RNA binding proteins and their RNA targets in the adaptation, reprogramming, and function of gene expression.


Assuntos
Evolução Molecular , Modelos Moleculares , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Humanos , Mutação , Neurospora crassa/enzimologia , Neurospora crassa/crescimento & desenvolvimento , Neurospora crassa/metabolismo , Conformação de Ácido Nucleico , Filogenia , Conformação Proteica , RNA Mensageiro/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
9.
Elife ; 3: e01257, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24842990

RESUMO

During translation elongation, the ribosome ratchets along its mRNA template, incorporating each new amino acid and translocating from one codon to the next. The elongation cycle requires dramatic structural rearrangements of the ribosome. We show here that deep sequencing of ribosome-protected mRNA fragments reveals not only the position of each ribosome but also, unexpectedly, its particular stage of the elongation cycle. Sequencing reveals two distinct populations of ribosome footprints, 28-30 nucleotides and 20-22 nucleotides long, representing translating ribosomes in distinct states, differentially stabilized by specific elongation inhibitors. We find that the balance of small and large footprints varies by codon and is correlated with translation speed. The ability to visualize conformational changes in the ribosome during elongation, at single-codon resolution, provides a new way to study the detailed kinetics of translation and a new probe with which to identify the factors that affect each step in the elongation cycle.DOI: http://dx.doi.org/10.7554/eLife.01257.001.


Assuntos
Elongação Traducional da Cadeia Peptídica , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/química , RNA Mensageiro/genética , Ribossomos/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
10.
PLoS One ; 9(6): e90859, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24609083

RESUMO

An unexpectedly large fraction of genes in metazoans (human, mouse, zebrafish, worm, fruit fly) express high levels of circularized RNAs containing canonical exons. Here we report that circular RNA isoforms are found in diverse species whose most recent common ancestor existed more than one billion years ago: fungi (Schizosaccharomyces pombe and Saccharomyces cerevisiae), a plant (Arabidopsis thaliana), and protists (Plasmodium falciparum and Dictyostelium discoideum). For all species studied to date, including those in this report, only a small fraction of the theoretically possible circular RNA isoforms from a given gene are actually observed. Unlike metazoans, Arabidopsis, D. discoideum, P. falciparum, S. cerevisiae, and S. pombe have very short introns (∼ 100 nucleotides or shorter), yet they still produce circular RNAs. A minority of genes in S. pombe and P. falciparum have documented examples of canonical alternative splicing, making it unlikely that all circular RNAs are by-products of alternative splicing or 'piggyback' on signals used in alternative RNA processing. In S. pombe, the relative abundance of circular to linear transcript isoforms changed in a gene-specific pattern during nitrogen starvation. Circular RNA may be an ancient, conserved feature of eukaryotic gene expression programs.


Assuntos
RNA/genética , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Dictyostelium/genética , Dictyostelium/metabolismo , Humanos , Anotação de Sequência Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , RNA/metabolismo , RNA Circular , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Análise de Sequência de RNA
11.
Genome Res ; 23(6): 1028-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23636942

RESUMO

A growing body of evidence supports the existence of an extensive network of RNA-binding proteins (RBPs) whose combinatorial binding affects the post-transcriptional fate of every mRNA in the cell-yet we still do not have a complete understanding of which proteins bind to mRNA, which of these bind concurrently, and when and where in the cell they bind. We describe here a method to identify the proteins that bind to RNA concurrently with an RBP of interest, using quantitative mass spectrometry combined with RNase treatment of affinity-purified RNA-protein complexes. We applied this method to the known RBPs Pab1, Nab2, and Puf3. Our method significantly enriched for known RBPs and is a clear improvement upon previous approaches in yeast. Our data reveal that some reported protein-protein interactions may instead reflect simultaneous binding to shared RNA targets. We also discovered more than 100 candidate RBPs, and we independently confirmed that 77% (23/30) bind directly to RNA. The previously recognized functions of the confirmed novel RBPs were remarkably diverse, and we mapped the RNA-binding region of one of these proteins, the transcriptional coactivator Mbf1, to a region distinct from its DNA-binding domain. Our results also provided new insights into the roles of Nab2 and Puf3 in post-transcriptional regulation by identifying other RBPs that bind simultaneously to the same mRNAs. While existing methods can identify sets of RBPs that interact with common RNA targets, our approach can determine which of those interactions are concurrent-a crucial distinction for understanding post-transcriptional regulation.


Assuntos
Proteômica/métodos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Análise por Conglomerados , Modelos Biológicos , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Processamento Pós-Transcricional do RNA , Reprodutibilidade dos Testes , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo
12.
PLoS One ; 7(5): e37108, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693568

RESUMO

To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.


Assuntos
Linfócitos B/metabolismo , Linfócitos B/patologia , Diferenciação Celular/genética , Transformação Celular Viral/genética , Proteínas Oncogênicas v-abl/metabolismo , Biossíntese de Proteínas , Transcriptoma , Linfócitos B/efeitos dos fármacos , Benzamidas , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Transformação Celular Viral/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Oncogênicas v-abl/antagonistas & inibidores , Proteínas Oncogênicas v-abl/genética , Piperazinas/farmacologia , Polirribossomos/efeitos dos fármacos , Polirribossomos/genética , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo , Células Precursoras de Linfócitos B/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Pirimidinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
13.
Mol Cell Biol ; 27(13): 5055-65, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17470555

RESUMO

Histone methylation plays important roles in the regulation of chromatin dynamics and transcription. Steady-state levels of histone lysine methylation are regulated by a balance between enzymes that catalyze either the addition or removal of methyl groups. Using an activity-based biochemical approach, we recently uncovered the JmjC domain as an evolutionarily conserved signature motif for histone demethylases. Furthermore, we demonstrated that Jhd1, a JmjC domain-containing protein in Saccharomyces cerevisiae, is an H3K36-specific demethylase. Here we report further characterization of Jhd1. Similar to its mammalian homolog, Jhd1-catalyzed histone demethylation requires iron and alpha-ketoglutarate as cofactors. Mutation and deletion studies indicate that the JmjC domain and adjacent sequences are critical for Jhd1 enzymatic activity, while the N-terminal PHD domain is dispensable. Overexpression of JHD1 results in a global reduction of H3K36 methylation in vivo. Finally, chromatin immunoprecipitation-coupled microarray studies reveal subtle changes in the distribution of H3K36me2 upon overexpression or deletion of JHD1. Our studies establish Jhd1 as a histone demethylase in budding yeast and suggest that Jhd1 functions to maintain the fidelity of histone methylation patterns along transcription units.


Assuntos
Histonas/metabolismo , Lisina/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Deleção de Genes , Células HeLa , Humanos , Ferro/farmacologia , Histona Desmetilases com o Domínio Jumonji , Ácidos Cetoglutáricos/farmacologia , Metilação/efeitos dos fármacos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Oxirredutases N-Desmetilantes/química , Oxirredutases N-Desmetilantes/isolamento & purificação , Fenótipo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/isolamento & purificação
14.
PLoS Genet ; 2(9): e158, 2006 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-17002501

RESUMO

The packaging of DNA into nucleosomes influences the accessibility of underlying regulatory information. Nucleosome occupancy and positioning are best characterized in the budding yeast Saccharomyces cerevisiae, albeit in asynchronous cell populations or on individual promoters such as PHO5 and GAL1-10. Using FAIRE (formaldehyde-assisted isolation of regulatory elements) and whole-genome microarrays, we examined changes in nucleosome occupancy throughout the mitotic cell cycle in synchronized populations of S. cerevisiae. Perhaps surprisingly, nucleosome occupancy did not exhibit large, global variation between cell cycle phases. However, nucleosome occupancy at the promoters of cell cycle-regulated genes was reduced specifically at the cell cycle phase in which that gene exhibited peak expression, with the notable exception of S-phase genes. We present data that establish FAIRE as a high-throughput method for assaying nucleosome occupancy. For the first time in any system, nucleosome occupancy was mapped genome-wide throughout the cell cycle. Fluctuation of nucleosome occupancy at promoters of most cell cycle-regulated genes provides independent evidence that periodic expression of these genes is controlled mainly at the level of transcription. The promoters of G2/M genes are distinguished from other cell cycle promoters by an unusually low baseline nucleosome occupancy throughout the cell cycle. This observation, coupled with the maintenance throughout the cell cycle of the stereotypic nucleosome occupancy states between coding and non-coding loci, suggests that the largest component of variation in nucleosome occupancy is "hard wired," perhaps at the level of DNA sequence.


Assuntos
Ciclo Celular/fisiologia , Genes Fúngicos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Moléculas de Adesão Celular/genética , Ciclina B/metabolismo , Ciclinas/metabolismo , Fase G1 , Fase G2 , Histonas/metabolismo , Lipoproteínas/metabolismo , Análise em Microsséries , Mitose , Dados de Sequência Molecular , Mutação/genética , Feromônios , Fase S , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...