Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Nano ; 18(10): 7546-7557, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38417118

RESUMO

Microgels are commonly applied as solute carriers, where the size, density, and functionality of the microgels depend on solute binding. As representatives for ionic solutes with high affinity for the microgel, we study here the effect of superchaotropic Keggin polyoxometalates (POMs) PW12O403- (PW) and SiW12O404- (SiW) on the aqueous swelling and internal structure of nonionic poly(N-isopropylacrylamide) (pNiPAM) microgels by light scattering techniques and small-angle X-ray scattering. Due to their weak hydration, these POMs bind spontaneously to the microgels at millimolar concentrations. The microgels thus become charged and swell at low POM concentration, surprisingly without strongly increasing the volume phase transition temperature, and deswell at higher POM concentration. The swelling arises because of the osmotic pressure of dissociated counterions of the POMs, while the deswelling is due to POMs acting as physical cross-links in the microgels under screened electrostatics in NaCl or excess POM solution. This swelling/deswelling transition is sharper for PW than for SiW related to the lower charge density, weaker hydration, and stronger binding of PW. The POMs elicit qualitatively and quantitatively different swelling effects from ionic surfactants and classical salts. Moreover, the network softness and topology govern the swelling response upon POM binding. The softer the microgel, the stronger is the swelling response, while, inside the microgel, regions of high polymer density swell/contract more upon electric charging/cross-linking than regions with low polymer density. POM binding thus enables fine-tuning of microgel properties and highlights the role of network topology in microgel swelling. Because POMs decompose at an alkaline pH, these POM/microgel systems also exhibit pH-responsive swelling in addition to the typical temperature responsiveness of pNiPAM microgels.

3.
J Phys Chem Lett ; 14(15): 3602-3608, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37022948

RESUMO

Nanometer-sized anions, like polyoxometalates and borate clusters, bind to nonionic hydrated matter driven by the chaotropic effect, which arises from the favorable dehydration of the ions. Herein, we evaluate the adsorption and activity coefficient of the superchaotropic Keggin polyoxometalate SiW12O404- (SiW) on nonionic surfactant (C8E4) micelles by modeling small-angle X-ray and neutron-scattering spectra. Neither hard sphere nor electrostatic repulsion models reproduce the experimental activity coefficient of adsorbed SiW ions on the micelles. However, the activity and binding of SiW on the micelles is well-described by a Langmuir adsorption isotherm. These results imply that adsorbed SiW ions are non-interacting and "create" around themselves adsorption sites on the micelle. The temperature dependence of the adsorption constant showed that the SiW adsorption is enthalpically driven and entropically unfavorable, in line with the typical chaotropic thermochemical signature. The adsorption enthalpy can be split into an electrostatic term and a water-recovery term to evaluate and qualitatively predict the superchaotropicity of a nanoion.

4.
J Colloid Interface Sci ; 641: 437-448, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36948099

RESUMO

HYPOTHESIS: The superchaotropic Keggin polyoxometalate α-SiW12O404- (SiW) was recently shown to stabilize non-ionic surfactant (C18:1E10) foams owing to electrostatic repulsion that arises from the adsorption of SiW-ions to the foam interfaces. The precise mechanism of foam stabilization by SiW however remained unsolved. EXPERIMENTS: Imaging and conductimetry were used on macroscopic foams to monitor the foam collapse under free drainage and small angle neutron scattering (SANS) at a given foam height allowed for the tracking of the evolution of film thickness under quasi-stationary conditions. Thin film pressure balance (TFPB) measurements enabled to quantify the resistance of single foam films to external pressure and to identify intra-film forces. FINDINGS: At low SiW/surfactant ratios, the adsorption of SiW induces electrostatic repulsion within foam films. Above a concentration threshold corresponding to an adsorption saturation, excess of SiW screens the electrostatic repulsion that leads to thinner foam films. Despite screened electrostatics, the foam and single foam films remain very stable caused by an additional steric stabilizing force consistent with the presence of trapped micelles inside the foam films that bridge between the interfaces. These trapped micelles can serve as a surfactant reservoir, which promotes self-healing of the interface leading to much more resilient foam films in comparison to bare surfactant foams/films.

5.
Angew Chem Int Ed Engl ; 62(3): e202210208, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36346946

RESUMO

Nanometer-sized anions (nano-ions) like polyoxometalates and boron clusters exhibit so-called superchaotropic behavior, which describes their strong binding to hydrated non-ionic matter in water. We show here that nano-ions, at millimolar concentrations, dramatically enhance the viscosity and induce gelation of aqueous solutions of non-ionic cellulose ethers (CEs), a class of widely utilized polymers known for their thickening and gel-forming ability. These phenomena arise from an interplay of attractive forces and repulsive electrostatic forces between CE-chains upon nano-ion binding. The attractive forces manifest themselves as aggregation of CE-chains into a physically crosslinked polymer network (gel). In turn, the electrostatic repulsions hamper the viscosity increase and gelation. Superchaotropic nano-ion binding emerges as a novel and general physical crosslinking motif for CE-solutions and exceeds by far the conventional thickening effects of classical salts and ionic surfactants.


Assuntos
Celulose , Éter , Polímeros , Água , Etil-Éteres , Éteres , Soluções
6.
J Colloid Interface Sci ; 603: 141-147, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34186391

RESUMO

HYPOTHESIS: Weakly hydrated nanometric ions, called superchaotropes, were recently shown to adsorb strongly to non-ionic surfaces affecting drastically the surface's physical-chemical properties due to a charging effect. Superchaotropic ions could serve as stabilizing agents for non-ionic colloidal systems, such as non-ionic surfactant foams. EXPERIMENTS: We study foams of the non-ionic surfactant BrijO10 (C18:1E10) without and in presence of the superchaotropic Keggin-ion SiW12O404- (SiW). The foams are investigated under free drainage conditions by image analysis and conductimetry to reveal the effect of SiW on the foam stability, liquid drainage, and bubble size. Additionally, small angle neutron scattering on the same foams, but in a dry quasi-stationary state, provides insight into effects of SiW on the foam films. FINDINGS: SiW strongly stabilizes non-ionic surfactant foams at millimolar concentrations by inducing electrostatic repulsions between foam film interfaces resulting in thicker and monodisperse foam films. A similar effect is observed with the ionic surfactant sodium dodecylsulfate (SDS) but to a lesser extent and with a different mechanism. At the foam films' interface, SiW adsorbs to the polar non-ionic surfactant heads driven by the superchaotropic effect whereas DS- anchors between non-ionic surfactant alkyl chains by the hydrophobic effect. The potential of superchaotropic ions as foam stabilizers is herein demonstrated.

7.
Angew Chem Int Ed Engl ; 59(21): 8084-8088, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32125752

RESUMO

Recently, nanometric ions were shown to adsorb to hydrated neutral surfaces and to bind to the cavities of macrocyclic molecules with an unexpectedly strong affinity arising from a solvent-mediated effect named superchaotropicity. We show here that nano-ions at low concentrations (µm range), similarly to anionic surfactants, induce the spontaneous transformation of a swollen lyotropic lamellar phase of non-ionic surfactant into a vesicle phase. This transition occurs when the neutral lamellae acquire charges, either by adsorption of the nano-ions onto, or by anchoring of the ionic surfactant into the lamellae. In contrast to ionic surfactants, nano-ions strongly dehydrate the neutral surfactant assemblies. As a conclusion, these purely inorganic nanometric ions act as alternatives to the widely used organic ionic surfactants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...