Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(49): 18977-18988, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30209131

RESUMO

Vacuolar ATPases are multisubunit protein complexes that are indispensable for acidification and pH homeostasis in a variety of physiological processes in all eukaryotic cells. An arginine residue (Arg735) in transmembrane helix 7 (TM7) of subunit a of the yeast ATPase is known to be essential for proton translocation. However, the specific mechanism of its involvement in proton transport remains to be determined. Arginine residues are usually assumed to "snorkel" toward the protein surface when exposed to a hydrophobic environment. Here, using solution NMR spectroscopy, molecular dynamics simulations, and in vivo yeast assays, we obtained evidence for the formation of a transient, membrane-embedded cation-π interaction in TM7 between Arg735 and two highly conserved nearby aromatic residues, Tyr733 and Trp737 We propose a mechanism by which the transient, membrane-embedded cation-π complex provides the necessary energy to keep the charged side chain of Arg735 within the hydrophobic membrane. Such cation-π interactions may define a general mechanism to retain charged amino acids in a hydrophobic membrane environment.


Assuntos
Arginina/química , Prótons , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Técnicas de Inativação de Genes , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Eletricidade Estática , Triptofano/química , Triptofano/genética , Tirosina/química , Tirosina/genética , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
2.
Curr Protein Pept Sci ; 13(3): 267-79, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22044140

RESUMO

Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance.


Assuntos
Proteínas de Membrana/química , Peptídeos/química , Dicroísmo Circular , Colorimetria , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Difração de Nêutrons , Estrutura Terciária de Proteína , Teoria Quântica , Espectrometria de Fluorescência , Difração de Raios X
3.
J Phys Chem B ; 114(13): 4717-24, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20225847

RESUMO

The interaction with biological membranes is of functional importance for many peptides and proteins. Structural studies on such membrane-bound biomacromolecules are often carried out in solutions containing small membrane-mimetic assemblies of detergent molecules. To investigate the influence of the hydrophobic chain length on the structure, diffusional and dynamical behavior of a peptide bound to micelles, we studied the binding of three peptides to n-phosphocholines with n ranging from 8 to 16. The peptides studied are the 15 residue antimicrobial peptide CM15, the 25-residue transmembrane helix 7 of yeast V-ATPase (TM7), and the 35-residue bacterial toxin LdrD. To keep the dimension of the peptide-membrane-mimetic assembly small, micelles are typically used when studying membrane-bound peptides and proteins, for example, by solution NMR spectroscopy. Since they are readily available in deuterated form most often sodium-dodecylsulfate (SDS) and dodecylphosphocholine (DPC) are used as the micelle-forming detergent. Using NMR, CD, and SAXS, we found that all phosphocholines studied form spherical micelles in the presence and absence of small bound peptides and the diameters of the micelles are basically unchanged upon peptide binding. The size of the peptide relative to the micelle determines to what extent the secondary structure can form. For small peptides (up to approximately 25 residues) the use of shorter chain phosphocholines is recommended for solution NMR studies due to the favorable spectral quality and since they are as well-structured as in DPC. In contrast, larger peptides are better structured in micelles formed by detergents with chain lengths longer than DPC.


Assuntos
Micelas , Peptídeos/química , Fosforilcolina/química , Peptídeos Catiônicos Antimicrobianos/química , Toxinas Bacterianas/química , Dicroísmo Circular , Proteínas de Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo
4.
J Biol Chem ; 285(8): 5606-13, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-19959472

RESUMO

CcdB(Vfi) from Vibrio fischeri is a member of the CcdB family of toxins that poison covalent gyrase-DNA complexes. In solution CcdB(Vfi) is a dimer that unfolds to the corresponding monomeric components in a two-state fashion. In the unfolded state, the monomer retains a partial secondary structure. This observation correlates well with the crystal and NMR structures of the protein, which show a dimer with a hydrophobic core crossing the dimer interface. In contrast to its F plasmid homologue, CcdB(Vfi) possesses a rigid dimer interface, and the apparent relative rotations of the two subunits are due to structural plasticity of the monomer. CcdB(Vfi) shows a number of non-conservative substitutions compared with the F plasmid protein in both the CcdA and the gyrase binding sites. Although variation in the CcdA interaction site likely determines toxin-antitoxin specificity, substitutions in the gyrase-interacting region may have more profound functional implications.


Assuntos
Aliivibrio fischeri/química , Toxinas Bacterianas/química , Multimerização Proteica , Toxinas Bacterianas/genética , Interações Hidrofóbicas e Hidrofílicas , Ressonância Magnética Nuclear Biomolecular , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Termodinâmica
5.
J Phys Chem B ; 113(13): 4400-6, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19256533

RESUMO

Many peptides, proteins, and drugs interact with biological membranes, and knowing the mode of binding is essential to understanding their biological functions. To obtain the complete orientation and immersion depth of such a compound, the membrane-mimetic system (micelle) is placed in an aqueous buffer containing the soluble and inert paramagnetic contrast agent Gd(DTPA-BMA). Paramagnetic relaxation enhancements (PREs) of a specific nucleus then depend only on its distance from the surface. The positioning of a structurally characterized compound can be obtained by least-squares fitting of experimental PREs to the micelle center position. This liquid-state NMR approach, which does not rely on isotopic labeling or chemical modification, has been applied to determine the location of the presumed transmembrane region 7 of yeast V-ATPase (TM7) and the membrane-bound antimicrobial peptide CM15 in micelles. TM7 binds in a trans-micelle orientation with the N-terminus being slightly closer to the surface than the C-terminus. CM15 is immersed unexpectedly deep into the micelle with the more hydrophilic side of the helix being closer to the surface than the hydrophobic one.


Assuntos
Micelas , Peptídeos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...