Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Nat Genet ; 56(6): 1288-1299, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831009

RESUMO

Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.


Assuntos
Aptidão Genética , Infecções por Salmonella , Humanos , Infecções por Salmonella/microbiologia , Infecções por Salmonella/genética , Genoma Bacteriano , Estresse Fisiológico/genética , Redes Reguladoras de Genes , Salmonella/genética , Pseudogenes/genética , Interações Hospedeiro-Patógeno/genética
2.
Microlife ; 5: uqae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623411

RESUMO

Invasive non-typhoidal Salmonella (iNTS) disease is a serious bloodstream infection that targets immune-compromised individuals, and causes significant mortality in sub-Saharan Africa. Salmonella enterica serovar Typhimurium ST313 causes the majority of iNTS in Malawi. We performed an intensive comparative genomic analysis of 608 S. Typhimurium ST313 isolates dating between 1996 and 2018 from Blantyre, Malawi. We discovered that following the arrival of the well-characterized S. Typhimurium ST313 lineage 2 in 1999, two multidrug-resistant variants emerged in Malawi in 2006 and 2008, designated sublineages 2.2 and 2.3, respectively. The majority of S. Typhimurium isolates from human bloodstream infections in Malawi now belong to sublineages 2.2 or 2.3. To understand the emergence of the prevalent ST313 sublineage 2.2, we studied two representative strains, D23580 (lineage 2) and D37712 (sublineage 2.2). The chromosome of ST313 lineage 2 and sublineage 2.2 only differed by 29 SNPs/small indels and a 3 kb deletion of a Gifsy-2 prophage region including the sseI pseudogene. Lineage 2 and sublineage 2.2 had distinctive plasmid profiles. The transcriptome was investigated in 15 infection-relevant in vitro conditions and within macrophages. During growth in physiological conditions that do not usually trigger S. Typhimurium SPI2 gene expression, the SPI2 genes of D37712 were transcriptionally active. We identified down-regulation of flagellar genes in D37712 compared with D23580. Following phenotypic confirmation of transcriptomic differences, we discovered that sublineage 2.2 had increased fitness compared with lineage 2 during mixed growth in minimal media. We speculate that this competitive advantage is contributing to the emergence of sublineage 2.2 in Malawi.

3.
Microb Genom ; 10(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529898

RESUMO

The transcriptome from a Saccharomyces cerevisiae tup1 deletion mutant was one of the first comprehensive yeast transcriptomes published. Subsequent transcriptomes from tup1 and cyc8 mutants firmly established the Tup1-Cyc8 complex as predominantly acting as a repressor of gene transcription. However, transcriptomes from tup1/cyc8 gene deletion or conditional mutants would all have been influenced by the striking flocculation phenotypes that these mutants display. In this study, we have separated the impact of flocculation from the transcriptome in a cyc8 conditional mutant to reveal those genes (i) subject solely to Cyc8p-dependent regulation, (ii) regulated by flocculation only and (iii) regulated by Cyc8p and further influenced by flocculation. We reveal a more accurate list of Cyc8p-regulated genes that includes newly identified Cyc8p-regulated genes that were masked by the flocculation phenotype and excludes genes which were indirectly influenced by flocculation and not regulated by Cyc8p. Furthermore, we show evidence that flocculation exerts a complex and potentially dynamic influence upon global gene transcription. These data should be of interest to future studies into the mechanism of action of the Tup1-Cyc8 complex and to studies involved in understanding the development of flocculation and its impact upon cell function.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Floculação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Transcrição Gênica
4.
F1000Res ; 12: 1568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38076297

RESUMO

The 24th annual Bioinformatics Open Source Conference ( BOSC 2023) was part of the 2023i conference on Intelligent Systems for Molecular Biology and the European Conference on Computational Biology (ISMB/ECCB 2023). Launched in 2000 and held yearly since, BOSC is the premier meeting covering open-source bioinformatics and open science. Like ISMB 2022, the 2023 meeting was a hybrid conference, with the in-person component hosted in Lyon, France. ISMB/ECCB attracted a near-record number of attendees, with over 2100 in person and about 900 more online. Approximately 200 people participated in BOSC sessions. In addition to 43 talks and 49 posters, BOSC featured two keynotes: Sara El-Gebali, who spoke about "A New Odyssey: Pioneering the Future of Scientific Progress Through Open Collaboration", and Joseph Yracheta, who spoke about "The Dissonance between Scientific Altruism & Capitalist Extraction: The Zero Trust and Federated Data Sovereignty Solution." Once again, a joint session brought together BOSC and the Bio-Ontologies COSI. The conference ended with a panel on Open and Ethical Data Sharing. As in prior years, BOSC was preceded by a CollaborationFest, a collaborative work event that brought together about 40 participants interested in synergistically combining ideas, shaping project plans, developing software, and more.


Assuntos
Biologia Computacional , Software , Humanos , Disseminação de Informação
5.
Front Cell Dev Biol ; 11: 1150991, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143926

RESUMO

Introduction: High-grade serous ovarian cancer (HGSOC) is the most prevalent and deadliest subtype of epithelial ovarian cancer (EOC), killing over 140,000 people annually. Morbidity and mortality are compounded by a lack of screening methods, and recurrence is common. Plasminogen-activator-inhibitor 1 (PAI-1, the protein product of SERPIN E1) is involved in hemostasis, extracellular matrix (ECM) remodeling, and tumor cell migration and invasion. Overexpression is associated with poor prognosis in EOC. Platelets significantly increase PAI-1 in cancer cells in vitro, and may contribute to the hematogenous metastasis of circulating tumor cells (CTCs). CTCs are viable tumor cells that intravasate and travel through the circulation-often aided by platelets - with the potential to form secondary metastases. Here, we provide evidence that PAI-1 is central to the platelet-cancer cell interactome, and plays a role in the metastatic cascade. Methods: SK-OV-3 cells where PAI-1 had been silenced, treated with healthy donor platelets, and treated with platelet-conditioned medium were used as an in vitro model of metastatic EOC. Gene expression analysis was performed using RNA-Seq data from untreated cells and cells treated with PAI-1 siRNA or negative control, each with and without platelets. Four cohorts of banked patient plasma samples (n = 239) were assayed for PAI-1 by ELISA. Treatment-naïve (TN) whole blood (WB) samples were evaluated for CTCs in conjunction with PAI-1 evaluation in matched plasma. Results and discussion: Significant phenotypic changes occurring when PAI-1 was silenced and when platelets were added to cells were reflected by RNA-seq data, with PAI-1 observed to be central to molecular mechanisms of EOC metastasis. Increased proliferation was observed in cells treated with platelets. Plasma PAI-1 significantly correlated with advanced disease in a TN cohort, and was significantly reduced in a neoadjuvant chemotherapy (NACT) cohort. PAI-1 demonstrated a trend towards significance in overall survival (OS) in the late-stage TN cohort, and correlation between PAI-1 and neutrophils in this cohort was significant. 72.7% (16/22) of TN patients with plasma PAI-1 levels higher than OS cutoff were CTC-positive. These data support a central role for PAI-1 in EOC metastasis, and highlight PAI-1's potential as a biomarker, prognostic indicator, or gauge of treatment response in HGSOC.

6.
PLoS Genet ; 19(8): e1010876, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37566621

RESUMO

The Tup1-Cyc8 complex in Saccharomyces cerevisiae was one of the first global co-repressors of gene transcription discovered. However, despite years of study, a full understanding of the contribution of Tup1p and Cyc8p to complex function is lacking. We examined TUP1 and CYC8 single and double deletion mutants and show that CYC8 represses more genes than TUP1, and that there are genes subject to (i) unique repression by TUP1 or CYC8, (ii) redundant repression by TUP1 and CYC8, and (iii) there are genes at which de-repression in a cyc8 mutant is dependent upon TUP1, and vice-versa. We also reveal that Tup1p and Cyc8p can make distinct contributions to commonly repressed genes most likely via specific interactions with different histone deacetylases. Furthermore, we show that Tup1p and Cyc8p can be found independently of each other to negatively regulate gene transcription and can persist at active genes to negatively regulate on-going transcription. Together, these data suggest that Tup1p and Cyc8p can associate with active and inactive genes to mediate distinct negative and positive regulatory roles when functioning within, and possibly out with the complex.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Nucleares/genética , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética
7.
Br J Dermatol ; 189(4): 447-458, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37243544

RESUMO

BACKGROUND: Treatment for the debilitating disease hidradenitis suppurativa (HS) is inadequate in many patients. Despite an incidence of approximately 1%, HS is often under-recognized and underdiagnosed, and is associated with a high morbidity and poor quality of life. OBJECTIVES: To gain a better understanding of the pathogenesis of HS, in order to design new therapeutic strategies. METHODS: We employed single-cell RNA sequencing to analyse gene expression in immune cells isolated from involved HS skin vs. healthy skin. Flow cytometry was used to quantify the absolute numbers of the main immune populations. The secretion of inflammatory mediators from skin explant cultures was measured using multiplex and enzyme-linked immunosorbent assays. RESULTS: Single-cell RNA sequencing analysis identified a significant enrichment in the frequency of plasma cells, T helper (Th) 17 cells and dendritic cell subsets in HS skin, and the immune transcriptome was distinct and more heterogeneous than healthy skin. Flow cytometry revealed significantly increased numbers of T cells, B cells, neutrophils, dermal macrophages and dendritic cells in HS skin. Genes and pathways associated with Th17 cells, interleukin (IL)-17, IL-1ß and the NLRP3 inflammasome were enhanced in HS skin, particularly in samples with a high inflammatory load. Inflammasome constituent genes principally mapped to Langerhans cells and a subpopulation of dendritic cells. The secretome of HS skin explants contained significantly increased concentrations of inflammatory mediators, including IL-1ß and IL-17A, and culture with an NLRP3 inflammasome inhibitor significantly reduced the secretion of these, as well as other, key mediators of inflammation. CONCLUSIONS: These data provide a rationale for targeting the NLRP3 inflammasome in HS using small-molecule inhibitors that are currently being tested for other indications.


Assuntos
Hidradenite Supurativa , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Qualidade de Vida , Pele/patologia , Inflamação , Mediadores da Inflamação/metabolismo , Mediadores da Inflamação/uso terapêutico
8.
Nat Commun ; 13(1): 6320, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329021

RESUMO

The plasma multimeric glycoprotein von Willebrand factor (VWF) plays a critical role in primary hemostasis by tethering platelets to exposed collagen at sites of vascular injury. Recent studies have identified additional biological roles for VWF, and in particular suggest that VWF may play an important role in regulating inflammatory responses. However, the molecular mechanisms through which VWF exerts its immuno-modulatory effects remain poorly understood. In this study, we report that VWF binding to macrophages triggers downstream MAP kinase signaling, NF-κB activation and production of pro-inflammatory cytokines and chemokines. In addition, VWF binding also drives macrophage M1 polarization and shifts macrophage metabolism towards glycolysis in a p38-dependent manner. Cumulatively, our findings define an important biological role for VWF in modulating macrophage function, and thereby establish a novel link between primary hemostasis and innate immunity.


Assuntos
Hemostasia , Fator de von Willebrand , Fator de von Willebrand/metabolismo , Hemostasia/fisiologia , Plaquetas/metabolismo , Imunidade Inata , Macrófagos/metabolismo
9.
Yeast ; 39(10): 535-547, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36127846

RESUMO

The yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and have acquired traits from the combined parental genomes such as ability to ferment a range of sugars at low temperatures and to produce aromatic flavour compounds, allowing for the production of lager beers with crisp, clean flavours. The polyploid strains are sterile and have reached an evolutionary bottleneck for genetic variation. Here we describe an accelerated evolution approach to obtain lager yeasts with enhanced flavour profiles. As the relative expression of orthologous alleles is a significant contributor to the transcriptome during fermentation, we aimed to induce genetic variation by altering the S. cerevisiae to S. eubayanus chromosome ratio. Aneuploidy was induced through the temporary inhibition of the cell's stress response and strains with increased production of aromatic amino acids via the Shikimate pathway were selected by resistance to amino acid analogues. Genomic changes such as gross chromosomal rearrangements, chromosome loss and chromosome gain were detected in the characterised mutants, as were single-nucleotide polymorphisms in ARO4, encoding for DAHP synthase, the catalytic enzyme in the first step of the Shikimate pathway. Transcriptome analysis confirmed the upregulation of genes encoding enzymes in the Ehrlich pathway and the concomitant increase in the production of higher alcohols and esters such as 2-phenylethanol, 2-phenylethyl acetate, tryptophol, and tyrosol. We propose that the polyploid nature of S. pastorianus genomes is an advantageous trait supporting opportunities for genetic alteration in otherwise sterile strains.


Assuntos
Álcool Feniletílico , Saccharomyces cerevisiae , 3-Desoxi-7-Fosfo-Heptulonato Sintase/genética , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Aminoácidos/metabolismo , Aminoácidos Aromáticos/genética , Aminoácidos Aromáticos/metabolismo , Cerveja , Fermentação , Genoma Fúngico , Genômica , Macrolídeos , Álcool Feniletílico/metabolismo , Poliploidia , Saccharomyces , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Açúcares/metabolismo
10.
F1000Res ; 11: 1034, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36128559

RESUMO

The 23 rd annual Bioinformatics Open Source Conference (BOSC 2022) was part of this year's conference on Intelligent Systems for Molecular Biology (ISMB). Launched in 2000 and held every year since, BOSC is the premier meeting covering open source bioinformatics and open science. ISMB 2022 was, for the first time, a hybrid conference, with the in-person component hosted in Madison, Wisconsin (USA). About 1000 people attended ISMB 2022 in person, with another 800 online. Approximately 200 people participated in BOSC sessions, which included 28 talks chosen from submitted abstracts, 46 posters, and a panel discussion, "Building and Sustaining Inclusive Open Science Communities". BOSC 2022 included joint keynotes with two other COSIs. Jason Williams gave a BOSC / Education COSI keynote entitled "Riding the bicycle: Including all scientists on a path to excellence". A joint session with Bio-Ontologies featured a keynote by Melissa Haendel, "The open data highway: turbo-boosting translational traffic with ontologies."


Assuntos
Biologia Computacional , Biologia de Sistemas , Congressos como Assunto , Humanos
11.
PLoS Genet ; 18(4): e1010149, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35389986

RESUMO

The lager yeasts, Saccharomyces pastorianus, are hybrids of Saccharomyces cerevisiae and Saccharomyces eubayanus and are divided into two broad groups, Group I and II. The two groups evolved from at least one common hybridisation event but have subsequently diverged with Group I strains losing many S. cerevisiae chromosomes while the Group II strains retain both sub-genomes. The complex genomes, containing orthologous alleles from the parental chromosomes, pose interesting questions regarding gene regulation and its impact on the fermentation properties of the strains. Superimposed on the presence of orthologous alleles are complexities of gene dosage due to the aneuploid nature of the genomes. We examined the contribution of the S. cerevisiae and S. eubayanus alleles to the gene expression patterns of representative Group I and II strains during fermentation. We show that the relative expression of S. cerevisiae and S. eubayanus orthologues is positively correlated with gene copy number. Despite the reduced S. cerevisiae content in the Group I strain, S. cerevisiae orthologues contribute to biochemical pathways upregulated during fermentation which may explain the retention of specific chromosomes in the strain. Conversely, S. eubayanus genes are significantly overrepresented in the upregulated gene pool in the Group II strain. Comparison of the transcription profiles of the strains during fermentation identified both common and unique gene expression patterns, with gene copy number being a dominant contributory factor. Thus, the aneuploid genomes create complex patterns of gene expression during fermentation with gene dosage playing a crucial role both within and between strains.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Transcriptoma , Aneuploidia , Cerveja , Fermentação , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Transcriptoma/genética
12.
F1000Res ; 102021.
Artigo em Inglês | MEDLINE | ID: mdl-34721839

RESUMO

The 22nd annual Bioinformatics Open Source Conference (BOSC 2021, open-bio.org/events/bosc-2021/) was held online as a track of the 2021 Intelligent Systems for Molecular Biology / European Conference on Computational Biology (ISMB/ECCB) conference. Launched in 2000 and held every year since, BOSC is the premier meeting covering topics related to open source software and open science in bioinformatics. In 2020, BOSC partnered with the Galaxy Community Conference to form the Bioinformatics Community Conference (BCC2020); that was the first BOSC to be held online. This year, BOSC returned to its roots as part of ISMB/ECCB 2021. As in 2020, the Covid-19 pandemic made it impossible to hold the conference in person, so ISMB/ECCB 2021 took place as an online meeting attended by over 2000 people from 79 countries. Nearly 200 people participated in BOSC sessions, which included 27 talks reviewed and selected from submitted abstracts, and three invited keynote talks representing a range of global perspectives on the role of open science and open source in driving research and inclusivity in the biosciences, one of which was presented in French with English subtitles.


Assuntos
Biologia Computacional , Humanos , Pandemias , Software
13.
J Biol Chem ; 297(6): 101417, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793837

RESUMO

SARM1 is a toll/interleukin-1 receptor -domain containing protein, with roles proposed in both innate immunity and neuronal degeneration. Murine SARM1 has been reported to regulate the transcription of chemokines in both neurons and macrophages; however, the extent to which SARM1 contributes to transcription regulation remains to be fully understood. Here, we identify differential gene expression in bone-marrow-derived macrophages (BMDMs) from C57BL/6 congenic 129 ES cell-derived Sarm1-/- mice compared with wild type (WT). However, we found that passenger genes, which are derived from the 129 donor strain of mice that flank the Sarm1 locus, confound interpretation of the results, since many of the identified differentially regulated genes come from this region. To re-examine the transcriptional role of SARM1 in the absence of passenger genes, here we generated three Sarm1-/- mice using CRISPR/Cas9. Treatment of neurons from these mice with vincristine, a chemotherapeutic drug causing axonal degeneration, confirmed SARM1's function in that process; however, these mice also showed that lack of SARM1 has no impact on transcription of genes previously shown to be affected such as chemokines. To gain further insight into SARM1 function, we generated an epitope-tagged SARM1 mouse. In these mice, we observed high SARM1 protein expression in the brain and brainstem and lower but detectable levels in macrophages. Overall, the generation of these SARM1 knockout and epitope-tagged mice has clarified that SARM1 is expressed in mouse macrophages yet has no general role in macrophage transcriptional regulation and has provided important new models to further explore SARM1 function.


Assuntos
Proteínas do Domínio Armadillo , Sistemas CRISPR-Cas , Proteínas do Citoesqueleto , Epitopos , Regulação da Expressão Gênica , Macrófagos/metabolismo , Transcrição Gênica , Animais , Proteínas do Domínio Armadillo/biossíntese , Proteínas do Domínio Armadillo/genética , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Epitopos/genética , Epitopos/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Vincristina/metabolismo
14.
PLoS Pathog ; 17(8): e1009280, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34460873

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a zoonotic pathogen that causes diarrheal disease in humans and animals. During salmonellosis, S. Typhimurium colonizes epithelial cells lining the gastrointestinal tract. S. Typhimurium has an unusual lifestyle in epithelial cells that begins within an endocytic-derived Salmonella-containing vacuole (SCV), followed by escape into the cytosol, epithelial cell lysis and bacterial release. The cytosol is a more permissive environment than the SCV and supports rapid bacterial growth. The physicochemical conditions encountered by S. Typhimurium within the epithelial cytosol, and the bacterial genes required for cytosolic colonization, remain largely unknown. Here we have exploited the parallel colonization strategies of S. Typhimurium in epithelial cells to decipher the two niche-specific bacterial virulence programs. By combining a population-based RNA-seq approach with single-cell microscopic analysis, we identified bacterial genes with cytosol-induced or vacuole-induced expression signatures. Using these genes as environmental biosensors, we defined that Salmonella is exposed to oxidative stress and iron and manganese deprivation in the cytosol and zinc and magnesium deprivation in the SCV. Furthermore, iron availability was critical for optimal S. Typhimurium replication in the cytosol, as well as entC, fepB, soxS, mntH and sitA. Virulence genes that are typically associated with extracellular bacteria, namely Salmonella pathogenicity island 1 (SPI1) and SPI4, showed increased expression in the cytosol compared to vacuole. Our study reveals that the cytosolic and vacuolar S. Typhimurium virulence gene programs are unique to, and tailored for, residence within distinct intracellular compartments. This archetypical vacuole-adapted pathogen therefore requires extensive transcriptional reprogramming to successfully colonize the mammalian cytosol.


Assuntos
Adaptação Fisiológica , Proteínas de Bactérias/metabolismo , Citosol/metabolismo , Regulação Bacteriana da Expressão Gênica , Infecções por Salmonella/microbiologia , Salmonella enterica/fisiologia , Virulência , Proteínas de Bactérias/genética , Citosol/microbiologia , Ilhas Genômicas , Células HeLa , Humanos , RNA-Seq , Infecções por Salmonella/metabolismo
15.
Cancers (Basel) ; 13(11)2021 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-34071089

RESUMO

Human cancer typically results from the stochastic accumulation of multiple oncogene-activating and tumor-suppressor gene-inactivating mutations. However, this process takes time and especially in the context of certain pediatric cancer, fewer but more 'impactful' mutations may in short order produce the full-blown cancer phenotype. This is well exemplified by the highly aggressive malignant rhabdoid tumor (MRT), where the only gene classically showing recurrent inactivation is SMARCB1, a subunit member of the BAF chromatin-remodeling complex. This is true of all three presentations of MRT including MRT of kidney (MRTK), MRT of the central nervous system (atypical teratoid rhabdoid tumor-ATRT) and extracranial, extrarenal rhabdoid tumor (EERT). Our reverse modeling of rhabdoid tumors with isogenic cell lines, either induced or not induced, to express SMARCB1 showed widespread differential chromatin remodeling indicative of altered BAF complex activity with ensuant histone modifications when tested by chromatin immunoprecipitation followed by sequencing (ChIP-seq). The changes due to reintroduction of SMARCB1 were preponderantly at typical enhancers with tandem BAF complex occupancy at these sites and related gene activation, as substantiated also by transcriptomic data. Indeed, for both MRTK and ATRT cells, there is evidence of an overlap between SMARCB1-dependent enhancer activation and tissue-specific lineage-determining genes. These genes are inactive in the tumor state, conceivably arresting the cells in a primitive/undifferentiated state. This epigenetic dysregulation from inactivation of a chromatin-remodeling complex subunit contributes to an improved understanding of the complex pathophysiological basis of MRT, one of the most lethal and aggressive human cancers.

16.
Nucleic Acids Res ; 49(9): 4877-4890, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34009357

RESUMO

Base-modification can occur throughout a transfer RNA molecule; however, elaboration is particularly prevalent at position 34 of the anticodon loop (the wobble position), where it functions to influence protein translation. Previously, we demonstrated that the queuosine modification at position 34 can be substituted with an artificial analogue via the queuine tRNA ribosyltransferase enzyme to induce disease recovery in an animal model of multiple sclerosis. Here, we demonstrate that the human enzyme can recognize a very broad range of artificial 7-deazaguanine derivatives for transfer RNA incorporation. By contrast, the enzyme displays strict specificity for transfer RNA species decoding the dual synonymous NAU/C codons, determined using a novel enzyme-RNA capture-release method. Our data highlight the broad scope and therapeutic potential of exploiting the queuosine incorporation pathway to intentionally engineer chemical diversity into the transfer RNA anticodon.


Assuntos
Pentosiltransferases/metabolismo , RNA de Transferência/metabolismo , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , RNA/metabolismo , RNA de Transferência/química , Especificidade por Substrato
17.
mBio ; 11(6)2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293378

RESUMO

Streptococcus pneumoniae is a frequent colonizer of the human nasopharynx and a major cause of life-threating invasive infections such as pneumonia, meningitis and sepsis. Over 1 million people die every year due to invasive pneumococcal disease (IPD), mainly in developing countries. Serotype 1 is a common cause of IPD; however, unlike other serotypes, it is rarely found in the carrier state in the nasopharynx, which is often considered a prerequisite for disease. The aim of this study was to understand this dichotomy. We used murine models of carriage and IPD to characterize the pathogenesis of African serotype 1 (sequence type 217) pneumococcal strains obtained from the Queen Elizabeth Central Hospital in Blantyre, Malawi. We found that ST217 pneumococcal strains were highly virulent in a mouse model of invasive pneumonia, but in contrast to the generally accepted assumption, can also successfully establish nasopharyngeal carriage. Interestingly, we found that cocolonizing serotypes may proliferate in the presence of serotype 1, suggesting that acquisition of serotype 1 carriage could increase the risk of developing IPD by other serotypes. RNA sequencing analysis confirmed that key virulence genes associated with inflammation and tissue invasiveness were upregulated in serotype 1. These data reveal important new insights into serotype 1 pathogenesis, with implications for carriage potential and risk of invasive disease through interactions with other cocolonizing serotypes, an often-overlooked factor in transmission and disease progression.IMPORTANCE The pneumococcus causes serious diseases such as pneumonia, sepsis, and meningitis and is a major cause of morbidity and mortality worldwide. Serotype 1 accounts for the majority of invasive pneumococcal disease cases in sub-Saharan Africa but is rarely found during nasopharyngeal carriage. Understanding the mechanisms leading to nasopharyngeal carriage and invasive disease by this serotype can help reduce its burden on health care systems worldwide. In this study, we also uncovered the potential impact of serotype 1 on disease progression of other coinfecting serotypes, which can have important implications for vaccine efficacy. Understanding the interactions between different serotypes during nasopharyngeal carriage may lead to improved intervention methods and therapies to reduce pneumococcal invasive disease levels.


Assuntos
Portador Sadio/microbiologia , Nasofaringe/microbiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Camundongos , Viabilidade Microbiana , Infecções Pneumocócicas/metabolismo , Sorogrupo , Streptococcus pneumoniae/classificação , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Fatores de Tempo , Virulência
18.
F1000Res ; 92020.
Artigo em Inglês | MEDLINE | ID: mdl-32983415

RESUMO

Launched in 2000 and held every year since, the Bioinformatics Open Source Conference (BOSC) is a volunteer-run meeting coordinated by the Open Bioinformatics Foundation (OBF) that covers open source software development and open science in bioinformatics. Most years, BOSC has been part of the Intelligent Systems for Molecular Biology (ISMB) conference, but in 2018, and again in 2020, BOSC partnered with the Galaxy Community Conference (GCC). This year's combined BOSC + GCC conference was called the Bioinformatics Community Conference (BCC2020, bcc2020.github.io). Originally slated to take place in Toronto, Canada, BCC2020 was moved online due to COVID-19. The meeting started with a wide array of training sessions; continued with a main program of keynote presentations, talks, posters, Birds of a Feather, and more; and ended with four days of collaboration (CoFest). Efforts to make the meeting accessible and inclusive included very low registration fees, talks presented twice a day, and closed captioning for all videos. More than 800 people from 61 countries registered for at least one part of the meeting, which was held mostly in the Remo.co video-conferencing platform.


Assuntos
Biologia Computacional , Congressos como Assunto , Canadá , Humanos
19.
Front Neurosci ; 14: 656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655363

RESUMO

Mutations in tubby like protein 1 gene (TULP1) are causative of early-onset recessive inherited retinal degenerations (IRDs); similarly, the Tulp1-/- mouse is also characterized by a rapid IRD. Tulp1 mRNA and protein expression was analyzed in wild type mouse retinas and expression data sets (NCBI) during early postnatal development. Comparative histology was undertaken in Tulp1-/-, rhodopsin-/- (Rho-/-) and retinal degeneration slow-/- (Rds-/-) mouse retinas. Bioinformatic analysis of predicted TULP1 interactors and IRD genes was performed. Peak expression of Tulp1 in healthy mouse retinas was detected at p8; of note, TULP1 was detected in both the outer and inner retina. Bioinformatic analysis indicated Tulp1 expression in retinal progenitor, photoreceptor and non-photoreceptor cells. While common features of photoreceptor degeneration were detected in Tulp1-/-, Rho-/-, and Rds-/- retinas, other alterations in bipolar, amacrine and ganglion cells were specific to Tulp1-/- mice. Additionally, predicted TULP1 interactors differed in various retinal cell types and new functions for TULP1 were suggested. A pilot bioinformatic analysis indicated that in a similar fashion to Tulp1, many other IRD genes were expressed in both inner and outer retinal cells at p4-p7. Our data indicate that expression of Tulp1 extends to multiple retinal cell types; lack of TULP1 may lead to primary degeneration not only of photoreceptor but also non-photoreceptor cells. Predicted interactors suggest widespread retinal functions for TULP1. Early and widespread expression of TULP1 and some other IRD genes in both the inner and outer retina highlights potential hurdles in the development of treatments for these IRDs.

20.
J Exp Med ; 217(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32106283

RESUMO

T cells are classically recognized as distinct subsets that express αß or γδ TCRs. We identify a novel population of T cells that coexpress αß and γδ TCRs in mice and humans. These hybrid αß-γδ T cells arose in the murine fetal thymus by day 16 of ontogeny, underwent αß TCR-mediated positive selection into CD4+ or CD8+ thymocytes, and constituted up to 10% of TCRδ+ cells in lymphoid organs. They expressed high levels of IL-1R1 and IL-23R and secreted IFN-γ, IL-17, and GM-CSF in response to canonically restricted peptide antigens or stimulation with IL-1ß and IL-23. Hybrid αß-γδ T cells were transcriptomically distinct from conventional γδ T cells and displayed a hyperinflammatory phenotype enriched for chemokine receptors and homing molecules that facilitate migration to sites of inflammation. These proinflammatory T cells promoted bacterial clearance after infection with Staphylococcus aureus and, by licensing encephalitogenic Th17 cells, played a key role in the development of autoimmune disease in the central nervous system.


Assuntos
Inflamação/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Animais , Biomarcadores/metabolismo , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Inflamação/patologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Transcrição Gênica , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...