Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 318(5): R961-R971, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267729

RESUMO

We examined the effect of acute intermittent hypoxia (IH) on sympathetic neural firing patterns and the role of the carotid chemoreceptors. We hypothesized exposure to acute IH would increase muscle sympathetic nerve activity (MSNA) via an increase in action potential (AP) discharge rates and within-burst firing. We further hypothesized any change in discharge patterns would be attenuated during acute chemoreceptor deactivation (hyperoxia). MSNA (microneurography) was assessed in 17 healthy adults (11 male/6 female; 31 ± 1 yr) during normoxic rest before and after 30 min of experimental IH. Prior to and following IH, participants were exposed to 2 min of 100% oxygen (hyperoxia). AP patterns were studied from the filtered raw MSNA signal using wavelet-based methodology. Compared with baseline, multiunit MSNA burst incidence (P < 0.01), AP incidence (P = 0.01), and AP content per burst (P = 0.01) were increased following IH. There was an increase in the probability of a particular AP cluster firing once (P < 0.01) and more than once (P = 0.03) per burst following IH. There was no effect of hyperoxia on multiunit MSNA at baseline or following IH (P > 0.05); however, hyperoxia following IH attenuated the probability of particular AP clusters firing more than once per burst (P < 0.01). Acute IH increases MSNA by increasing AP discharge rates and within-burst firing. A portion of the increase in within-burst firing following IH can be attributed to the carotid chemoreceptors. These data advance the mechanistic understanding of sympathetic activation following acute IH in humans.


Assuntos
Corpo Carotídeo/fisiopatologia , Hipóxia/fisiopatologia , Contração Muscular , Músculo Esquelético/inervação , Oxigênio/sangue , Recrutamento Neurofisiológico , Sistema Nervoso Simpático/fisiopatologia , Potenciais de Ação , Adulto , Biomarcadores/sangue , Corpo Carotídeo/metabolismo , Feminino , Humanos , Hipóxia/sangue , Hipóxia/diagnóstico , Masculino , Fatores de Tempo
2.
Am J Physiol Regul Integr Comp Physiol ; 318(1): R173-R181, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746629

RESUMO

We examined the contribution of the carotid chemoreceptors to insulin-mediated increases in muscle sympathetic nerve activity (MSNA) in healthy humans. We hypothesized that reductions in carotid chemoreceptor activity would attenuate the sympathoexcitatory response to hyperinsulinemia. Young, healthy adults (9 male/9 female, 28 ± 1 yr, 24 ± 1 kg/m2) completed a 30-min euglycemic baseline followed by a 90-min hyperinsulinemic (1 mU·kg fat-free mass-1·min-1), euglycemic infusion. MSNA (microneurography of the peroneal nerve) was continuously measured. The role of the carotid chemoreceptors was assessed at baseline and during hyperinsulinemia via 1) acute hyperoxia, 2) low-dose dopamine (1-4 µg·kg-1·min-1), and 3) acute hyperoxia + low-dose dopamine. MSNA burst frequency increased from baseline during hyperinsulinemia (P < 0.01). Acute hyperoxia had no effect on MSNA burst frequency at rest (P = 0.74) or during hyperinsulinemia (P = 0.83). The insulin-mediated increase in MSNA burst frequency (P = 0.02) was unaffected by low-dose dopamine (P = 0.60). When combined with low-dose dopamine, acute hyperoxia had no effect on MSNA burst frequency at rest (P = 0.17) or during hyperinsulinemia (P = 0.85). Carotid chemoreceptor desensitization in young, healthy men and women does not attenuate the sympathoexcitatory response to hyperinsulinemia. Our data suggest that the carotid chemoreceptors do not contribute to acute insulin-mediated increases in MSNA in young, healthy adults.


Assuntos
Artérias Carótidas/fisiologia , Células Quimiorreceptoras/metabolismo , Insulina/farmacologia , Adulto , Glicemia , Estudos Cross-Over , Dopamina/farmacologia , Método Duplo-Cego , Feminino , Humanos , Masculino , Músculo Esquelético , Sistema Nervoso Simpático/fisiologia
3.
J Neurophysiol ; 122(4): 1386-1396, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31389742

RESUMO

We sought to examine the effect of varying chemoreflex stress on sympathetic neural recruitment strategies during end-expiratory apnea. We hypothesized that increases in the firing frequency and probability of low-threshold axons at the asphyxic "break point" would be exaggerated during hypoxia and attenuated during hyperoxia. Multiunit muscle sympathetic nervous system activity (MSNA) (peroneal nerve microneurography) was measured in 10 healthy male subjects (31 ± 2 yr, 25 ± 1 kg/m2). Individuals completed maximal voluntary end-expiratory apnea under normoxic, hypoxic (inspired O2 fraction: 0.17 ± 0.01), and hyperoxic (inspired O2 fraction: 0.92 ± 0.03) conditions. Action potential (AP) patterns were examined from the filtered raw signal with wavelet-based methodology. Multiunit MSNA was increased (P ≤ 0.05) during normoxic apnea, because of an increase in the frequency and incidence of AP spikes (243 ± 75 to 519 ± 134 APs/min, P = 0.048; 412 ± 133 to 733 ± 185 APs/100 heartbeats, P = 0.02). Multiunit MSNA increased from baseline (P < 0.01) during hypoxic apnea, which was due to an increase in the frequency and incidence of APs (192 ± 59 to 952 ± 266 APs/min, P < 0.01; 326 ± 89 to 1,212 ± 327 APs/100 heartbeats, P < 0.01). Hypoxic apnea also resulted in an increase in the probability of a particular AP cluster firing more than once per burst (P < 0.01). Hyperoxia attenuated any increase in MSNA with apnea, such that no changes in multiunit MSNA or frequency or incidence of AP spikes were observed (P > 0.05). We conclude that increases in frequency and incidence of APs during apnea are potentiated during hypoxia and suppressed when individuals are hyperoxic, highlighting the important impact of chemoreflex stress in AP discharge patterns. The results may have implications for neural control of the circulation in recreational activities and/or clinical conditions prone to apnea.NEW & NOTEWORTHY Our results demonstrate that, compared with normoxic end-expiratory apnea, hypoxic apnea increases the frequency and incidence of action potential spikes as well as the probability of multiple firing. We further show that this response is suppressed when individuals are hyperoxic. These data highlight the potentially important role of chemoreflex stress in neural firing and recruitment and may have implications for neural control of the circulation in recreational and/or clinical conditions prone to apnea.


Assuntos
Apneia/fisiopatologia , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Recrutamento Neurofisiológico , Reflexo , Sistema Nervoso Simpático/fisiopatologia , Potenciais de Ação , Adulto , Corpo Carotídeo/fisiopatologia , Humanos , Masculino , Nervo Fibular/fisiopatologia , Estresse Fisiológico
4.
J Neurophysiol ; 119(6): 2166-2175, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488839

RESUMO

To study how changes in baroreceptor afferent activity affect patterns of sympathetic neural activation, we manipulated arterial blood pressure with intravenous nitroprusside (NTP) and phenylephrine (PE) and measured action potential (AP) patterns with wavelet-based methodology. We hypothesized that 1) baroreflex unloading (NTP) would increase firing of low-threshold axons and recruitment of latent axons and 2) baroreflex loading (PE) would decrease firing of low-threshold axons. Heart rate (HR, ECG), arterial blood pressure (BP, brachial catheter), and muscle sympathetic nerve activity (MSNA, microneurography of peroneal nerve) were measured at baseline and during steady-state systemic, intravenous NTP (0.5-1.2 µg·kg-1·min-1, n = 13) or PE (0.2-1.0 µg·kg-1·min-1, n = 9) infusion. BP decreased and HR and integrated MSNA increased with NTP ( P < 0.01). AP incidence (326 ± 66 to 579 ± 129 APs/100 heartbeats) and AP content per integrated burst (8 ± 1 to 11 ± 2 APs/burst) increased with NTP ( P < 0.05). The firing probability of low-threshold axons increased with NTP, and recruitment of high-threshold axons was observed (22 ± 3 to 24 ± 3 max cluster number, 9 ± 1 to 11 ± 1 clusters/burst; P < 0.05). BP increased and HR and integrated MSNA decreased with PE ( P < 0.05). PE decreased AP incidence (406 ± 128 to 166 ± 42 APs/100 heartbeats) and resulted in fewer unique clusters (15 ± 2 to 9 ± 1 max cluster number, P < 0.05); components of an integrated burst (APs or clusters per burst) were not altered ( P > 0.05). These data support a hierarchical pattern of sympathetic neural activation during manipulation of baroreceptor afferent activity, with rate coding of active neurons playing the predominant role and recruitment/derecruitment of higher-threshold units occurring with steady-state hypotensive stress. NEW & NOTEWORTHY To study how changes in baroreceptor afferent activity affect patterns of sympathetic neural activation, we manipulated arterial blood pressure with intravenous nitroprusside and phenylephrine and measured sympathetic outflow with wavelet-based methodology. Baroreflex unloading increased sympathetic activity by increasing firing probability of low-threshold axons (rate coding) and recruiting new populations of high-threshold axons. Baroreflex loading decreased sympathetic activity by decreasing the firing probability of larger axons (derecruitment); however, the components of an integrated burst were unaffected.


Assuntos
Barorreflexo , Artéria Braquial/fisiologia , Sistema Nervoso Simpático/fisiologia , Potenciais de Ação , Adulto , Artéria Braquial/efeitos dos fármacos , Artéria Braquial/inervação , Feminino , Frequência Cardíaca , Humanos , Masculino , Nitroprussiato/farmacologia , Nervo Fibular/fisiologia , Fenilefrina/farmacologia , Pressorreceptores/fisiologia , Sistema Nervoso Simpático/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
5.
Physiol Rep ; 6(4)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29464923

RESUMO

The ability to maintain adequate cerebral blood flow and oxygenation determines tolerance to central hypovolemia. We tested the hypothesis that acute hypoxemia during simulated blood loss in humans would cause impairments in cerebral blood flow control. Ten healthy subjects (32 ± 6 years, BMI 27 ± 2 kg·m-2 ) were exposed to stepwise lower body negative pressure (LBNP, 5 min at 0, -15, -30, and -45 mmHg) during both normoxia and hypoxia (Fi O2  = 0.12-0.15 O2 titrated to an SaO2 of ~85%). Physiological responses during both protocols were expressed as absolute changes from baseline, one subject was excluded from analysis due to presyncope during the first stage of LBNP during hypoxia. LBNP induced greater reductions in mean arterial pressure during hypoxia versus normoxia (MAP, at -45 mmHg: -20 ± 3 vs. -5 ± 3 mmHg, P < 0.01). Despite differences in MAP, middle cerebral artery velocity responses (MCAv) were similar between protocols (P = 0.41) due to increased cerebrovascular conductance index (CVCi) during hypoxia (main effect, P = 0.04). Low frequency MAP (at -45 mmHg: 17 ± 5 vs. 0 ± 5 mmHg2 , P = 0.01) and MCAv (at -45 mmHg: 4 ± 2 vs. -1 ± 1 cm·s-2 , P = 0.04) spectral power density, as well as low frequency MAP-mean MCAv transfer function gain (at -30 mmHg: 0.09 ± 0.06 vs. -0.07 ± 0.06 cm·s-1 ·mmHg-1 , P = 0.04) increased more during hypoxia versus normoxia. Contrary to our hypothesis, these findings support the notion that cerebral blood flow control is not impaired during exposure to acute hypoxia and progressive central hypovolemia despite lower MAP as a result of compensated increases in cerebral conductance and flow variability.


Assuntos
Circulação Cerebrovascular , Hipóxia/fisiopatologia , Pressão Negativa da Região Corporal Inferior/efeitos adversos , Adulto , Velocidade do Fluxo Sanguíneo , Humanos , Masculino
6.
Am J Physiol Heart Circ Physiol ; 314(3): H530-H541, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167122

RESUMO

ANG II-salt hypertension selectively increases splanchnic sympathetic nerve activity (sSNA), but the extent to which this reflects increased respiratory versus cardiac rhythmic bursting is unknown. Here, integrated sSNA was elevated in ANG II-infused rats fed a high-salt (2% NaCl) diet (ANG II-HSD) compared with vehicle-infused rats fed a normal-salt (0.4% NaCl) diet (Veh-NSD; P < 0.01). Increased sSNA was not accompanied by increased inspiratory or expiratory bursting, consistent with no group difference in central inspiratory drive. Consistent with preserved inhibitory baroreflex entrainment of elevated sSNA in ANG II-HSD rats, the time integral ( P < 0.05) and amplitude ( P < 0.01) of cardiac rhythmic sSNA were increased. Consistent with activity of hypothalamic paraventricular nucleus (PVN) neurons supporting basal SNA in ANG II-salt hypertension, inhibition of PVN with the GABA-A receptor agonist muscimol reduced mean arterial pressure (MAP) and integrated sSNA only in the ANG II-HSD group ( P < 0.001). PVN inhibition had no effect on respiratory rhythmic sSNA bursting in either group but reduced cardiac rhythmic sSNA in ANG II-HSD rats only ( P < 0.01). The latter likely reflected reduced inhibitory baroreflex entrainment subsequent to the fall of MAP. Of note is that MAP as well as integrated and rhythmic burst patterns of sSNA were similar in vehicle-infused rats whether they were fed a normal or high-salt diet. Findings indicate that PVN neurons support elevated sSNA in ANG II-HSD rats by driving a tonic component of activity without altering respiratory or cardiac rhythmic bursting. Because sSNA was unchanged in Veh-HSD rats, activation of PVN-driven tonic sSNA appears to require central actions of ANG II. NEW & NOTEWORTHY ANG II-salt hypertension is strongly neurogenic and depends on hypothalamic paraventricular nucleus (PVN)-driven splanchnic sympathetic nerve activity (sSNA). Here, respiratory and cardiac bursts of sSNA were preserved in ANG II-salt rats and unaltered by PVN inhibition, suggesting that PVN neurons drive a tonic component of sSNA rather than modulating dominant patterns of burst discharge.


Assuntos
Angiotensina II , Barorreflexo , Coração/inervação , Hipertensão/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Periodicidade , Cloreto de Sódio na Dieta , Sistema Nervoso Simpático/fisiopatologia , Animais , Pressão Arterial , Barorreflexo/efeitos dos fármacos , Modelos Animais de Doenças , Agonistas de Receptores de GABA-A/farmacologia , Frequência Cardíaca , Hipertensão/induzido quimicamente , Masculino , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Nervo Frênico/fisiopatologia , Ratos Sprague-Dawley , Taxa Respiratória , Nervos Esplâncnicos/fisiopatologia , Sistema Nervoso Simpático/efeitos dos fármacos , Fatores de Tempo
7.
Physiol Rep ; 4(13)2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27418545

RESUMO

The purpose of the present investigation was to examine the contribution of the carotid body chemoreceptors to changes in baroreflex control of heart rate with exposure to hypoxia. We hypothesized spontaneous cardiac baroreflex sensitivity (scBRS) would be reduced with hypoxia and this effect would be blunted when carotid chemoreceptor activity was reduced with low-dose dopamine. Fifteen healthy adults (11 M/4 F) completed two visits randomized to intravenous dopamine or placebo (saline). On each visit, subjects were exposed to 5-min normoxia (~99% SpO2), followed by 5-min hypoxia (~84% SpO2). Blood pressure (intra-arterial catheter) and heart rate (ECG) were measured continuously and scBRS was assessed by spectrum and sequence methodologies. scBRS was reduced with hypoxia (P < 0.01). Using the spectrum analysis approach, the fall in scBRS with hypoxia was attenuated with infusion of low-dose dopamine (P < 0.01). The decrease in baroreflex sensitivity to rising pressures (scBRS "up-up") was also attenuated with low-dose dopamine (P < 0.05). However, dopamine did not attenuate the decrease in baroreflex sensitivity to falling pressures (scBRS "down-down"; P > 0.05). Present findings are consistent with a reduction in scBRS with systemic hypoxia. Furthermore, we show this effect is partially mediated by the carotid body chemoreceptors, given the fall in scBRS is attenuated when activity of the chemoreceptors is reduced with low-dose dopamine. However, the improvement in scBRS with dopamine appears to be specific to rising blood pressures. These results may have important implications for impairments in baroreflex function common in disease states of acute and/or chronic hypoxemia, as well as the experimental use of dopamine to assess such changes.


Assuntos
Barorreflexo/efeitos dos fármacos , Corpo Carotídeo/efeitos dos fármacos , Dopaminérgicos/administração & dosagem , Dopamina/administração & dosagem , Frequência Cardíaca/efeitos dos fármacos , Coração/inervação , Hipóxia/tratamento farmacológico , Receptores Dopaminérgicos/efeitos dos fármacos , Adulto , Pressão Sanguínea/efeitos dos fármacos , Corpo Carotídeo/fisiopatologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Hipóxia/fisiopatologia , Infusões Intravenosas , Masculino , Fatores de Tempo , Adulto Jovem
8.
J Appl Physiol (1985) ; 120(2): 138-47, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26586909

RESUMO

Human studies use varying levels of low-dose (1-4 µg·kg(-1)·min(-1)) dopamine to examine peripheral chemosensitivity, based on its known ability to blunt carotid body responsiveness to hypoxia. However, the effect of dopamine on the ventilatory responses to hypoxia is highly variable between individuals. Thus we sought to determine 1) the dose response relationship between dopamine and peripheral chemosensitivity as assessed by the ventilatory response to hypoxia in a cohort of healthy adults, and 2) potential confounding cardiovascular responses at variable low doses of dopamine. Young, healthy adults (n = 30, age = 32 ± 1, 24 male/6 female) were given intravenous (iv) saline and a range of iv dopamine doses (1-4 µg·kg(-1)·min(-1)) prior to and throughout five hypoxic ventilatory response (HVR) tests. Subjects initially received iv saline, and after each HVR the dopamine infusion rate was increased by 1 µg·kg(-1)·min(-1). Tidal volume, respiratory rate, heart rate, blood pressure, and oxygen saturation were continuously measured. Dopamine significantly reduced HVR at all doses (P < 0.05). When subjects were divided into high (n = 13) and low (n = 17) baseline chemosensitivity, dopamine infusion (when assessed by dose) reduced HVR in the high group only (P < 0.01), with no effect of dopamine on HVR in the low group (P > 0.05). Dopamine infusion also resulted in a reduction in blood pressure (3 µg·kg(-1)·min(-1)) and total peripheral resistance (1-4 µg·kg(-1)·min(-1)), driven primarily by subjects with low baseline chemosensitivity. In conclusion, we did not find a single dose of dopamine that elicited a nadir HVR in all subjects. Additionally, potential confounding cardiovascular responses occur with dopamine infusion, which may limit its usage.


Assuntos
Corpo Carotídeo/efeitos dos fármacos , Células Quimiorreceptoras/efeitos dos fármacos , Dopamina/uso terapêutico , Hipóxia/tratamento farmacológico , Adulto , Pressão Sanguínea/efeitos dos fármacos , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/metabolismo , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipóxia/metabolismo , Masculino , Pessoa de Meia-Idade , Oxigênio/metabolismo , Respiração/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Volume de Ventilação Pulmonar/efeitos dos fármacos , Adulto Jovem
9.
Am J Physiol Regul Integr Comp Physiol ; 308(5): R351-9, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25519737

RESUMO

We recently reported that mean arterial pressure (MAP) is maintained in water-deprived rats by an irregular tonic component of vasomotor sympathetic nerve activity (SNA) that is driven by neuronal activity in the hypothalamic paraventricular nucleus (PVN). To establish whether generation of tonic SNA requires time-dependent (i.e., hours or days of dehydration) neuroadaptive responses or can be abruptly generated by even acute circuit activation, forebrain sympathoexcitatory osmosensory inputs to PVN were stimulated by infusion (0.1 ml/min, 10 min) of hypertonic saline (HTS; 1.5 M NaCl) through an internal carotid artery (ICA). Whereas isotonic saline (ITS; 0.15 M NaCl) had no effect (n = 5), HTS increased (P < 0.001; n = 6) splanchnic SNA (sSNA), phrenic nerve activity (PNA), and MAP. Bilateral PVN injections of muscimol (n = 6) prevented HTS-evoked increases of integrated sSNA and PNA (P < 0.001) and attenuated the accompanying pressor response (P < 0.01). Blockade of PVN NMDA receptors with d-(2R)-amino-5-phosphonovaleric acid (AP5; n = 6) had similar effects. Analysis of respiratory rhythmic bursting of sSNA revealed that ICA HTS increased mean voltage (P < 0.001) without affecting the amplitude of inspiratory or expiratory bursts. Analysis of cardiac rhythmic sSNA likewise revealed that ICA HTS increased mean voltage. Cardiac rhythmic sSNA oscillation amplitude was also increased, which is consistent with activation of arterial baroreceptor during the accompanying pressor response. Increased mean sSNA voltage by HTS was blocked by prior PVN inhibition (muscimol) and blockade of PVN NMDA receptors (AP5). We conclude that even acute glutamatergic activation of PVN (i.e., by hypertonicity) is sufficient to selectively increase a tonic component of vasomotor SNA.


Assuntos
Sistema Cardiovascular/inervação , Desidratação/fisiopatologia , Osmorregulação , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Prosencéfalo/fisiopatologia , Solução Salina Hipertônica , Sistema Vasomotor/fisiopatologia , Animais , Pressão Arterial , Barorreflexo , Desidratação/induzido quimicamente , Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/farmacologia , Agonistas de Receptores de GABA-A/farmacologia , Frequência Cardíaca , Masculino , Osmorregulação/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Nervo Frênico/fisiopatologia , Pressorreceptores/fisiopatologia , Prosencéfalo/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Taxa Respiratória , Nervos Esplâncnicos/fisiopatologia , Fatores de Tempo , Regulação para Cima , Sistema Vasomotor/efeitos dos fármacos
10.
J Physiol ; 592(17): 3783-99, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973410

RESUMO

Resting sympathetic nerve activity (SNA) consists primarily of respiratory and cardiac rhythmic bursts of action potentials. During homeostatic challenges such as dehydration, the hypothalamic paraventricular nucleus (PVN) is activated and drives SNA in support of arterial pressure (AP). Given that PVN neurones project to brainstem cardio-respiratory regions that generate bursting patterns of SNA, we sought to determine the contribution of PVN to support of rhythmic bursting of SNA during dehydration and to elucidate which bursts dominantly contribute to maintenance of AP. Euhydrated (EH) and dehydrated (DH) (48 h water deprived) rats were anaesthetized, bilaterally vagotomized and underwent acute PVN inhibition by bilateral injection of the GABA-A receptor agonist muscimol (0.1 nmol in 50 nl). Consistent with previous studies, muscimol had no effect in EH rats (n = 6), but reduced mean AP (MAP; P < 0.001) and integrated splanchnic SNA (sSNA; P < 0.001) in DH rats (n = 6). Arterial pulse pressure was unaffected in both groups. Muscimol reduced burst frequency of phrenic nerve activity (P < 0.05) equally in both groups without affecting the burst amplitude-duration integral (i.e. area under the curve). PVN inhibition did not affect the amplitude of the inspiratory peak, expiratory trough or expiratory peak of sSNA in either group, but reduced cardiac rhythmic sSNA in DH rats only (P < 0.001). The latter was largely reversed by inflating an aortic cuff to restore MAP (n = 5), suggesting that the muscimol-induced reduction of cardiac rhythmic sSNA in DH rats was an indirect effect of reducing MAP and thus arterial baroreceptor input. We conclude that MAP is largely maintained in anaesthetized DH rats by a PVN-driven component of sSNA that is neither respiratory nor cardiac rhythmic.


Assuntos
Potenciais de Ação , Pressão Sanguínea , Desidratação/fisiopatologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Nervos Esplâncnicos/fisiologia , Animais , Agonistas de Receptores de GABA-A/farmacologia , Masculino , Muscimol/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Nervo Frênico/fisiologia , Nervo Frênico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Nervos Esplâncnicos/fisiopatologia
11.
Hypertension ; 63(3): 527-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24324037

RESUMO

Development of angiotensin II (Ang II)-dependent hypertension involves microglial activation and proinflammatory cytokine actions in the hypothalamic paraventricular nucleus (PVN). Cytokines activate receptor signaling pathways that can both acutely grade neuronal discharge and trigger long-term adaptive changes that modulate neuronal excitability through gene transcription. Here, we investigated contributions of PVN cytokines to maintenance of hypertension induced by subcutaneous infusion of Ang II (150 ng/kg per min) for 14 days in rats consuming a 2% NaCl diet. Results indicate that bilateral PVN inhibition with the GABA-A receptor agonist muscimol (100 pmol/50 nL) caused significantly greater reductions of renal and splanchnic sympathetic nerve activity (SNA) and mean arterial pressure in hypertensive than in normotensive rats (P<0.01). Thus, ongoing PVN neuronal activity seems required for support of hypertension. Next, the role of the prototypical cytokine tumor necrosis factor-α was investigated. Whereas PVN injection of tumor necrosis factor-α (0.3 pmol/50 nL) acutely increased lumbar and splanchnic SNA and mean arterial pressure, interfering with endogenous tumor necrosis factor-α by injection of etanercept (10 µg/50 nL) was without effect in hypertensive and normotensive rats. Next, we determined that although microglial activation in PVN was increased in hypertensive rats, bilateral injections of minocycline (0.5 µg/50 nL), an inhibitor of microglial activation, failed to reduce lumbar or splanchnic SNA or mean arterial pressure in hypertensive or in normotensive rats. Collectively, these findings indicate that established Ang II-salt hypertension is supported by PVN neuronal activity, but short term maintenance of SNA and arterial blood pressure does not depend on ongoing local actions of tumor necrosis factor-α.


Assuntos
Pressão Sanguínea , Hipertensão/fisiopatologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Angiotensina II/toxicidade , Animais , Modelos Animais de Doenças , Agonistas de Receptores de GABA-A/farmacologia , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Masculino , Muscimol/farmacologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/fisiopatologia , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio na Dieta/toxicidade
12.
J Appl Physiol (1985) ; 114(12): 1689-96, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23580603

RESUMO

Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.


Assuntos
Frequência Cardíaca/fisiologia , Sistema Nervoso Simpático/fisiologia , Privação de Água/fisiologia , Animais , Barorreflexo/fisiologia , Hemodinâmica/fisiologia , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Respiração , Vagotomia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...