Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Sci Total Environ ; 673: 44-53, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30986681

RESUMO

The Occoquan Reservoir is part of an indirect potable reuse system where a water reclamation plant (WRP) discharges a nitrified product water to prevent the onset of anaerobic conditions in the bottom sediments during the summer months. The elongated narrow shape of the reservoir combined with water temperature gradients in the inlet results in density currents that enhance the transport of nitrate from the surface to the bottom waters. The morphology of the reservoir also causes a longitudinal change in the ratio of water volume to sediment area, herein defined as the effective depth (ZED). Field observations revealed that first-order nitrate removal rate coefficients (k) varied inversely with ZED, suggesting that the upper reaches of the reservoir have a higher potential for nitrate removal compared to the areas closer to the dam. A similar relationship between k (d-1) and ZED was confirmed during laboratory experiments. Differences in k values were attributed mainly to the change in the nitrate supply rate as a result of the increase in water volume flowing over a specific sediment area, which limited nitrate transport to the sediments. The low variability found between the mass transfer coefficients for nitrate (Coefficient of Variation = 0.25) suggested a nearly constant biotic nitrogen removal and confirmed that k values were mainly affected by changes in ZED. Finally, similarities in k values between field and laboratory samples with similar ZED values suggested that different segments of natural systems may be properly downscaled to laboratory-sized configurations for analytical purposes by means of the ZED concept.

2.
Environ Sci Technol ; 51(18): 10615-10623, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28777911

RESUMO

Understanding the translocation of nanoparticles (NPs) into plants is challenging because qualitative and quantitative methods are still being developed and the comparability of results among different methods is unclear. In this study, uptake of titanium dioxide NPs and larger bulk particles (BPs) in rice plant (Oryza sativa L.) tissues was evaluated using three orthogonal techniques: electron microscopy, single-particle inductively coupled plasma mass spectroscopy (spICP-MS) with two different plant digestion approaches, and total elemental analysis using ICP optical emission spectroscopy. In agreement with electron microscopy results, total elemental analysis of plants exposed to TiO2 NPs and BPs at 5 and 50 mg/L concentrations revealed that TiO2 NPs penetrated into the plant root and resulted in Ti accumulation in above ground tissues at a higher level compared to BPs. spICP-MS analyses revealed that the size distributions of internalized particles differed between the NPs and BPs with the NPs showing a distribution with smaller particles. Acid digestion resulted in higher particle numbers and the detection of a broader range of particle sizes than the enzymatic digestion approach, highlighting the need for development of robust plant digestion procedures for NP analysis. Overall, there was agreement among the three techniques regarding NP and BP penetration into rice plant roots and spICP-MS showed its unique contribution to provide size distribution information.


Assuntos
Nanopartículas , Oryza/química , Titânio/farmacocinética , Tamanho da Partícula
3.
ACS Nano ; 11(1): 526-540, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27983787

RESUMO

For environmental studies assessing uptake of orally ingested engineered nanoparticles (ENPs), a key step in ensuring accurate quantification of ingested ENPs is efficient separation of the organism from ENPs that are either nonspecifically adsorbed to the organism and/or suspended in the dispersion following exposure. Here, we measure the uptake of 30 and 60 nm gold nanoparticles (AuNPs) by the nematode, Caenorhabditis elegans, using a sucrose density gradient centrifugation protocol to remove noningested AuNPs. Both conventional inductively coupled plasma mass spectrometry (ICP-MS) and single particle (sp)ICP-MS are utilized to measure the total mass and size distribution, respectively, of ingested AuNPs. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) imaging confirmed that traditional nematode washing procedures were ineffective at removing excess suspended and/or adsorbed AuNPs after exposure. Water rinsing procedures had AuNP removal efficiencies ranging from 57 to 97% and 22 to 83%, while the sucrose density gradient procedure had removal efficiencies of 100 and 93 to 98%, respectively, for the 30 and 60 nm AuNP exposure conditions. Quantification of total Au uptake was performed following acidic digestion of nonexposed and Au-exposed nematodes, whereas an alkaline digestion procedure was optimized for the liberation of ingested AuNPs for spICP-MS characterization. Size distributions and particle number concentrations were determined for AuNPs ingested by nematodes with corresponding confirmation of nematode uptake via high-pressure freezing/freeze substitution resin preparation and large-area SEM imaging. Methods for the separation and in vivo quantification of ENPs in multicellular organisms will facilitate robust studies of ENP uptake, biotransformation, and hazard assessment in the environment.


Assuntos
Caenorhabditis elegans/química , Ouro/isolamento & purificação , Nanopartículas Metálicas/química , Imagem Óptica , Animais , Centrifugação com Gradiente de Concentração , Ouro/química , Espectrometria de Massas , Tamanho da Partícula , Sacarose/química , Propriedades de Superfície
4.
J Chromatogr A ; 1473: 122-132, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27802881

RESUMO

Asymmetric flow field flow fractionation (AF4) has several instrumental factors that may have a direct effect on separation performance. A sensitivity analysis was applied to ascertain the relative importance of AF4 primary instrument factor settings for the separation of a complex environmental sample. The analysis evaluated the impact of instrumental factors namely, cross flow, ramp time, focus flow, injection volume, and run buffer concentration on the multi-angle light scattering measurement of natural organic matter (NOM) molar mass (MM). A 2(5-1) orthogonal fractional factorial design was used to minimize analysis time while preserving the accuracy and robustness in the determination of the main effects and interactions between any two instrumental factors. By assuming that separations resulting in smaller MM measurements would be more accurate, the analysis produced a ranked list of effects estimates for factors and interactions of factors based on their relative importance in minimizing the MM. The most important and statistically significant AF4 instrumental factors were buffer concentration and cross flow. The least important was ramp time. A parallel 2(5-2) orthogonal fractional factorial design was also employed on five environmental factors for synthetic natural water samples containing silver nanoparticles (NPs), namely: NP concentration, NP size, NOM concentration, specific conductance, and pH. None of the water quality characteristic effects or interactions were found to be significant in minimizing the measured MM; however, the interaction between NP concentration and NP size was an important effect when considering NOM recovery. This work presents a structured approach for the rigorous assessment of AF4 instrument factors and optimal settings for the separation of complex samples utilizing efficient orthogonal factional factorial design and appropriate graphical analysis.


Assuntos
Técnicas de Química Analítica/métodos , Fracionamento por Campo e Fluxo , Luz , Nanopartículas/análise , Espalhamento de Radiação , Prata/análise , Tamanho da Partícula , Poluentes Químicos da Água/análise
5.
Anal Chim Acta ; 886: 207-13, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26320655

RESUMO

The analysis of natural and otherwise complex samples is challenging and yields uncertainty about the accuracy and precision of measurements. Here we present a practical tool to assess relative accuracy among separation protocols for techniques using light scattering detection. Due to the highly non-linear relationship between particle size and the intensity of scattered light, a few large particles may obfuscate greater numbers of small particles. Therefore, insufficiently separated mixtures may result in an overestimate of the average measured particle size. Complete separation of complex samples is needed to mitigate this challenge. A separation protocol can be considered improved if the average measured size is smaller than a previous separation protocol. Further, the protocol resulting in the smallest average measured particle size yields the best separation among those explored. If the differential in average measured size between protocols is less than the measurement uncertainty, then the selected protocols are of equivalent precision. As a demonstration, this assessment metric is applied to optimization of cross flow (V(x)) protocols in asymmetric flow field flow fractionation (AF(4)) separation interfaced with online quasi-elastic light scattering (QELS) detection using mixtures of polystyrene beads spanning a large size range. Using this assessment metric, the V(x) parameter was modulated to improve separation until the average measured size of the mixture was in statistical agreement with the calculated average size of particles in the mixture. While we demonstrate this metric by improving AF(4) V(x) protocols, it can be applied to any given separation parameters for separation techniques that employ dynamic light scattering detectors.


Assuntos
Nanopartículas/química , Poliestirenos/química , Fracionamento por Campo e Fluxo , Luz , Tamanho da Partícula , Espalhamento de Radiação
6.
Behav Processes ; 109 Pt B: 151-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25158070

RESUMO

The way animals move through space is likely to affect the way they learn and remember spatial information. For example, a pelagic fish, Astyanax fasciatus, moves freely in vertical and horizontal space and encodes information from both dimensions with similar accuracy. Benthic fish can also move with six degrees of freedom, but spend much of their time travelling over the substrate; hence they might be expected to prioritise the horizontal dimension. To understand how benthic fish encode and deploy three-dimensional spatial information we used a fully rotational Y-maze to test whether Corydoras aeneus (i) encode space as an integrated three-dimensional unit or as separate elements, by testing whether they can decompose a three-dimensional trajectory into its vertical and horizontal components, and (ii) whether they prioritise vertical or horizontal information when the two conflict. In contradiction to the expectation generated by our hypothesis, our results suggest that C. aeneus are better at extracting vertical information than horizontal information from a three-dimensional trajectory, suggesting that the vertical axis is learned and remembered robustly. Our results also showed that C. aeneus prioritise vertical information when it conflicts with horizontal information. From these results, we infer that benthic fish attend preferentially to a cue unique to the vertical axis, and we suggest that this cue is hydrostatic pressure.


Assuntos
Peixes-Gato , Cognição , Percepção Espacial , Navegação Espacial , Animais
7.
J Mater Sci Mater Med ; 25(11): 2481-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25011499

RESUMO

The use of silver nanoparticles (AgNPs) in textiles for enhanced anti-microbial properties has led to concern about their release and impact on both human and environmental health. Here a novel method for in situ visualization of AgNP release from silver-impregnated wound dressings is introduced. By combining an environmental scanning electron microscope, a gaseous analytical detector and a peltier cooling stage, this technique provides near-instantaneous nanoscale characterization of interactions between individual water droplets and AgNPs. We show that dressings with different silver application methods have very distinct AgNP release dynamics. Specifically, water condensation on dressings with AgNP deposited directly on the fiber surface resulted in substantial and rapid AgNP release. By comparison, AgNP release from wound dressing with nanoparticles grown, not deposited, from the fiber surface was either much slower or negligible. Our methodology complements standard bulk techniques for studying of silver release from fabrics by providing dynamic nanoscale information about mechanisms governing AgNP release from individual fibers. Thus coupling these nano and macro-scale methods can provide insight into how the wound dressing fabrication could be engineered to optimize AgNP release for different applications.


Assuntos
Bandagens , Preparações de Ação Retardada/química , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Prata/administração & dosagem , Prata/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Preparações de Ação Retardada/administração & dosagem , Difusão , Teste de Materiais/métodos , Imagem Molecular/métodos
8.
Anal Chem ; 86(7): 3517-24, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24611464

RESUMO

We demonstrate the ability to visualize nanoparticle dissolution while simultaneously providing chemical signatures that differentiate between citrate-capped silver nanoparticles (AgNPs), AgNPs forced into dissolution via exposure to UV radiation, silver nitrate (AgNO3), and AgNO3/citrate deposited from aqueous solutions and suspensions. We utilize recently developed inkjet printing (IJP) protocols to deposit the different solutions/suspensions as NP aggregates and soluble species, which separate onto surfaces in situ, and collect mass spectral imaging data via time-of-flight secondary ion mass spectrometry (TOF-SIMS). Resulting 2D Ag(+) chemical images provide the ability to distinguish between the different Ag-containing starting materials and, when coupled with mass spectral peak ratios, provide information-rich data sets for quick and reproducible visualization of NP-based aqueous constituents. When compared to other measurements aimed at studying NP dissolution, the IJP-TOF-SIMS approach offers valuable information that can potentially help in understanding the complex equilibria in NP-containing solutions and suspensions, including NP dissolution kinetics and extent of overall dissolution.

9.
Environ Pollut ; 181: 68-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23820189

RESUMO

The increased use of titanium dioxide nanoparticles (nano-TiO2) in consumer products such as sunscreen has raised concerns about their possible risk to human and environmental health. In this work, we report the occurrence, size fractionation and behavior of titanium (Ti) in a children's swimming pool. Size-fractionated samples were analyzed for Ti using ICP-MS. Total titanium concentrations ([Ti]) in the pool water ranged between 21 µg/L and 60 µg/L and increased throughout the 101-day sampling period while [Ti] in tap water remained relatively constant. The majority of [Ti] was found in the dissolved phase (<1 kDa), with only a minor fraction of total [Ti] being considered either particulate or microparticulate. Simple models suggest that evaporation may account for the observed variation in [Ti], while sunscreen may be a relevant source of particulate and microparticule Ti. Compared to diet, incidental ingestion of nano-Ti from swimming pool water is minimal.


Assuntos
Monitoramento Ambiental , Piscinas , Titânio/análise , Poluentes Químicos da Água/análise , Criança , Humanos , Nanopartículas/análise , Protetores Solares/química
10.
J Environ Monit ; 14(7): 1914-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22706074

RESUMO

Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.


Assuntos
Modelos Moleculares , Nanopartículas/química , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície , Titânio/química
11.
J Microsc ; 246(2): 143-52, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22455446

RESUMO

Polymeric materials have been suggested as possible environmental sources of persistent organic pollutants such as flame retardants. In situ, micrometre-scale characterization techniques for polymer matrix containing flame retardants may provide some insight into the dominant environmental transfer mechanism(s) of these brominated compounds. In this work, we demonstrate that micro X-ray fluorescence spectroscopy (µXRF), focused ion beam scanning electron microscopy (FIB-SEM) combined with energy dispersive X-ray spectroscopy (EDS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS) are promising techniques for the elemental and chemical identification of brominated fire retardant compounds (such as the deca-congener of polybrominated diphenyl ether, BDE-209) within polymeric materials (e.g. high-impact polystyrene or HIPS). Data from µXRF demonstrated that bromine (Br) inclusions were evenly distributed throughout the HIPS samples, whereas FIB SEM-EDS analysis revealed that small antimony (Sb) and Br inclusions are present, and regionally higher concentrations of Br surround the Sb inclusions (compared to the bulk material). Four prominent mass-to-charge ratio peaks (m/z 485, 487, 489 and 491) that correspond to BDE-209 were identified by ToF-SIMS and can be used to chemically distinguish this molecule on the surface of polymeric materials with respect to other brominated organic molecules. These techniques can be important in any study that investigates the route of entry to the environmental surroundings of BDE-containing materials.

12.
Environ Sci Technol ; 46(7): 4025-33, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22329664

RESUMO

Membrane fouling remains one of the most problematic issues surrounding membrane use in water and wastewater treatment applications. Organic and biological fouling contribute to irreversible fouling and flux decline in these processes. The aim of this study was to reduce both organic and biological fouling by modifying the surface of commercially available poly(ether sulfone) (PES) membranes using the polyelectrolyte multilayer modification method with poly(styrenesulfonate) (PSS), poly(diallyldimethylammonium chloride) (PDADMAC), and silver nanoparticles (nanoAg) integrated onto the surface as stable, thin (15 nm) films. PSS increases the hydrophilicity of the membrane and increases the negative surface charge, while integration of nanoAg into the top PSS layer imparts biocidal characteristics to the modified surface. Fouling was simulated by filtering aqueous solutions of humic acid (5 and 20 mg L(-1)), a suspension of Escherichia coli (10(6) colony-forming units (CFU) mL(-1)), and a mixture of both foulants through unmodified and modified PES membranes under batch conditions. Filtration and cleaning studies confirmed that the modification significantly reduced organic and biological fouling.


Assuntos
Incrustação Biológica/prevenção & controle , Eletrólitos/química , Filtração/instrumentação , Filtração/métodos , Membranas Artificiais , Nanopartículas Metálicas/química , Polietilenos/química , Poliestirenos/química , Compostos de Amônio Quaternário/química , Prata/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Compostos Orgânicos/química , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície/efeitos dos fármacos
13.
Environ Sci Technol ; 46(3): 1819-27, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22201446

RESUMO

Engineered nanoparticles, due to their unique electrical, mechanical, and catalytic properties, are presently found in many commercial products and will be intentionally or inadvertently released at increasing concentrations into the natural environment. Metal- and metal oxide-based nanomaterials have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but the molecular mechanisms through which this occurs are poorly understood. For the first time, we report that copper oxide nanoparticles induce DNA damage in agricultural and grassland plants. Significant accumulation of oxidatively modified, mutagenic DNA lesions (7,8-dihydro-8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 4,6-diamino-5-formamidopyrimidine) and strong plant growth inhibition were observed for radish (Raphanus sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum) under controlled laboratory conditions. Lesion accumulation levels mediated by copper ions and macroscale copper particles were measured in tandem to clarify the mechanisms of DNA damage. To our knowledge, this is the first evidence of multiple DNA lesion formation and accumulation in plants. These findings provide impetus for future investigations on nanoparticle-mediated DNA damage and repair mechanisms in plants.


Assuntos
Cobre/toxicidade , Dano ao DNA , Lolium/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Raphanus/efeitos dos fármacos , Cobre/farmacocinética , Cromatografia Gasosa-Espectrometria de Massas , Lolium/genética , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Raphanus/genética , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo , Espectrometria por Raios X
14.
Environ Sci Technol ; 45(23): 9837-56, 2011 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21988187

RESUMO

Carbon nanotubes (CNTs) are currently incorporated into various consumer products, and numerous new applications and products containing CNTs are expected in the future. The potential for negative effects caused by CNT release into the environment is a prominent concern and numerous research projects have investigated possible environmental release pathways, fate, and toxicity. However, this expanding body of literature has not yet been systematically reviewed. Our objective is to critically review this literature to identify emerging trends as well as persistent knowledge gaps on these topics. Specifically, we examine the release of CNTs from polymeric products, removal in wastewater treatment systems, transport through surface and subsurface media, aggregation behaviors, interactions with soil and sediment particles, potential transformations and degradation, and their potential ecotoxicity in soil, sediment, and aquatic ecosystems. One major limitation in the current literature is quantifying CNT masses in relevant media (polymers, tissues, soils, and sediments). Important new directions include developing mechanistic models for CNT release from composites and understanding CNT transport in more complex and environmentally realistic systems such as heteroaggregation with natural colloids and transport of nanoparticles in a range of soils.


Assuntos
Ecologia/métodos , Monitoramento Ambiental/métodos , Nanotubos de Carbono/análise
15.
J Nanobiotechnology ; 8: 13, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20550705

RESUMO

BACKGROUND: The rapid growth of the nanotechnology industry and the wide application of various nanomaterials have raised concerns over their impact on the environment and human health. Yet little is known about the mechanism of cellular uptake and cytotoxicity of nanoparticles. An array of nanomaterials has recently been introduced into cancer research promising for remarkable improvements in diagnosis and treatment of the disease. Among them, quantum dots (QDs) distinguish themselves in offering many intrinsic photophysical properties that are desirable for targeted imaging and drug delivery. RESULTS: We explored the kinetics and mechanism of cellular uptake of QDs with different surface coatings in two human mammary cells. Using fluorescence microscopy and laser scanning cytometry (LSC), we found that both MCF-7 and MCF-10A cells internalized large amount of QD655-COOH, but the percentage of endocytosing cells is slightly higher in MCF-7 cell line than in MCF-10A cell line. Live cell fluorescent imaging showed that QD cellular uptake increases with time over 40 h of incubation. Staining cells with dyes specific to various intracellular organelles indicated that QDs were localized in lysosomes. Transmission electron microscopy (TEM) images suggested a potential pathway for QD cellular uptake mechanism involving three major stages: endocytosis, sequestration in early endosomes, and translocation to later endosomes or lysosomes. No cytotoxicity was observed in cells incubated with 0.8 nM of QDs for a period of 72 h. CONCLUSIONS: The findings presented here provide information on the mechanism of QD endocytosis that could be exploited to reduce non-specific targeting, thereby improving specific targeting of QDs in cancer diagnosis and treatment applications. These findings are also important in understanding the cytotoxicity of nanomaterials and in emphasizing the importance of strict environmental control of nanoparticles.

16.
Environ Sci Technol ; 44(4): 1386-91, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20092299

RESUMO

Potable water treatment facilities may become an important barrier in limiting human exposure to engineered nanoparticles (ENPs) as ENPs begin to contaminate natural aquatic systems. Coagulation of ENPs will likely be a major process that controls the ENP fate and the subsequent removal in the aqueous phase. The influence that source water quality has on ENP coagulation is still relatively unknown. The current study uses a 2(3) x 2(4-1) fractional factorial design to identify seven key surface water constituents that affect multiwall carbon nanotube (MWCNT) coagulation. These seven factors include: influent concentrations of kaolin, organic matter (OM), alginate, and MWCNTs; type and dosage of coagulant; and method of MWCNT stabilization. MWCNT removal was most affected by coagulant type and dosage, with alum outperforming ferric chloride at circumneutral pH. None of the other factors were universally significant but instead depended on coagulant type, dose, and method of stabilization. In all cases where factors were found to have a significant impact on MWCNT removal, however, the relationship was consistent: higher influent concentrations of kaolin and alginate improved MWCNT removal while higher influent concentrations of OM hindered MWCNT coagulation. Once MWCNTs are released into the natural environment, their coagulation behavior will be determined by the type and quantity of pollutants (i.e., factors) present in the aquatic environment and are governed by the same mechanisms that influence the colloidal stability of "natural" nanoparticles.


Assuntos
Nanotubos de Carbono/química , Água/química , Alginatos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Caulim/química , Nanotecnologia , Purificação da Água
17.
J Environ Qual ; 39(6): 1934-41, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21284290

RESUMO

Quantum dots (QDs) of two different surface chemistries (carboxyl [COOH] and polyethylene glycol [PEG] modified) were utilized to determine the impact of surface functionality on QD mobility and distribution in Pseudomonas aeruginosa PAO1 biofilms. Confocal laser scanning microscopy was utilized to evaluate QD association with biofilm components (proteins, cells, and polysaccharides). Quantum dots did not preferentially associate with cell surfaces compared but did colocalize with extracellular proteins in the biofilm matrix. Neither PEG nor COOH QDs were found to be internalized by individual bacterial cells. Neither QD functionality nor flow rate of QD application (0.3 mL min(-1) or 3.0 mL min(-1)) resulted in a marked difference in QD association with P. aeruginosa biofilms. However, center of density determinations indicated COOH QDs could more easily penetrate the biofilm matrix by diffusion than PEG QDs. Biofilms with PEG QDs associated had rougher polysaccharide layers and rougher cell distribution than biofilms with COOH QDs. This work suggests natural biofilms may serve as deposition locations in natural and engineered environmental systems, and biofilm structural parameters may change based on exposure to nanomaterials of varied physical characteristics.


Assuntos
Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Pontos Quânticos , Propriedades de Superfície
18.
BMC Cancer ; 9: 351, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19799784

RESUMO

BACKGROUND: Nanocarrier-based antibody targeting is a promising modality in therapeutic and diagnostic oncology. Single-walled carbon nanotubes (SWNTs) exhibit two unique optical properties that can be exploited for these applications, strong Raman signal for cancer cell detection and near-infrared (NIR) absorbance for selective photothermal ablation of tumors. In the present study, we constructed a HER2 IgY-SWNT complex and demonstrated its dual functionality for both detection and selective destruction of cancer cells in an in vitro model consisting of HER2-expressing SK-BR-3 cells and HER2-negative MCF-7 cells. METHODS: The complex was constructed by covalently conjugating carboxylated SWNTs with anti-HER2 chicken IgY antibody, which is more specific and sensitive than mammalian IgGs. Raman signals were recorded on Raman spectrometers with a laser excitation at 785 nm. NIR irradiation was performed using a diode laser system, and cells with or without nanotube treatment were irradiated by 808 nm laser at 5 W/cm2 for 2 min. Cell viability was examined by the calcein AM/ethidium homodimer-1 (EthD-1) staining. RESULTS: Using a Raman optical microscope, we found the Raman signal collected at single-cell level from the complex-treated SK-BR-3 cells was significantly greater than that from various control cells. NIR irradiation selectively destroyed the complex-targeted breast cancer cells without harming receptor-free cells. The cell death was effectuated without the need of internalization of SWNTs by the cancer cells, a finding that has not been reported previously. CONCLUSION: We have demonstrated that the HER2 IgY-SWNT complex specifically targeted HER2-expressing SK-BR-3 cells but not receptor-negative MCF-7 cells. The complex can be potentially used for both detection and selective photothermal ablation of receptor-positive breast cancer cells without the need of internalization by the cells. Thus, the unique intrinsic properties of SWNTs combined with high specificity and sensitivity of IgY antibodies can lead to new strategies for cancer detection and therapy.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Imunoglobulinas/uso terapêutico , Receptor ErbB-2/uso terapêutico , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Imunoglobulinas/química , Imunoglobulinas/imunologia , Nanotubos de Carbono/química , Receptor ErbB-2/imunologia , Análise Espectral Raman
19.
Environ Sci Technol ; 43(9): 3067-72, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19534115

RESUMO

Although the presence of polybrominated diphenyl ethers (PBDEs) in house dust has been linked to consumer products, the mechanism of transfer remains poorly understood. We conjecture that volatilized PBDEs will be associated with dust particles containing organic matter and will be homogeneously distributed in house dust. In contrast, PBDEs arising from weathering or abrasion of polymers should remain bound to particles of the original polymer matrix and will be heterogeneously distributed within the dust. We used scanning electron microscopy and othertools of environmental forensic microscopy to investigate PBDEs in dust, examining U.S. and U.K. dust samples with extremely high levels of BDE 209 (260-2600 microg/g), a nonvolatile compound at room temperature. We found that the bromine in these samples was concentrated in widely scattered, highly contaminated particles. In the house dust samples from Boston (U.S.), bromine was associated with a polymer/organic matrix. These results suggest that the BDE 209 was transferred to dust via physical processes such as abrasion or weathering. In conjunction with more traditional tools of environmental chemistry, such as gas chromatography/mass spectrometry (GC/MS), environmental forensic microscopy provides novel insights into the origins of BDE 209 in dust and their mechanisms of transfer from products.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Meio Ambiente , Ciências Forenses/instrumentação , Éteres Difenil Halogenados/análise , Automóveis , Poeira/análise , Massachusetts , Microscopia Eletrônica de Varredura , Espectrofotometria Infravermelho , Reino Unido
20.
Behav Processes ; 81(2): 333-6, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18834933

RESUMO

Humans and some birds and insects sometimes prefer alternatives associated with greater past cost or need, sometimes affording losses. It has been proposed that this is widespread because learning may include knowledge about both the physical properties of alternatives and state-dependent fitness gains. We examine the phenomenon for the first time in a fish, the banded tetra (Astyanax fasciatus). During training we paired two different color cues to identical food rewards, one under greater deprivation than the other. We then tested preference between these cues under both deprivation states. Consistent with previous results in other taxa, the fish preferred the cue associated with previous greater deprivation regardless of the condition under which they were tested. These results provide further support to the view that organisms assign value using state-dependent increments in fitness during learning. Although generally adaptive, under experimental conditions state-dependent valuation learning can lead to paradoxical choices.


Assuntos
Condicionamento Operante/fisiologia , Peixes/fisiologia , Privação de Alimentos/fisiologia , Aprendizagem/fisiologia , Animais , Cor , Sinais (Psicologia) , Tomada de Decisões/fisiologia , Alimentos , Fome/fisiologia , Desempenho Psicomotor/fisiologia , Reforço Psicológico , Recompensa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...