Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 6(2)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758032

RESUMO

The NCBI Gene Expression Omnibus (GEO) provides tools to query and download transcriptomic data. However, less than 4% of microbial experiments include the sample group annotations required to assess differential gene expression for high-throughput reanalysis, and data deposited after 2014 universally lack these annotations. Our algorithm GAUGE (general annotation using text/data group ensembles) automatically annotates GEO microbial data sets, including microarray and RNA sequencing studies, increasing the percentage of data sets amenable to analysis from 4% to 33%. Eighty-nine percent of GAUGE-annotated studies matched group assignments generated by human curators. To demonstrate how GAUGE annotation can lead to scientific insight, we created GAPE (GAUGE-annotated Pseudomonas aeruginosa and Escherichia coli transcriptomic compendia for reanalysis), a Shiny Web interface to analyze 73 GAUGE-annotated P. aeruginosa studies, three times more than previously available. GAPE analysis revealed that PA3923, a gene of unknown function, was frequently differentially expressed in more than 50% of studies and significantly coregulated with genes involved in biofilm formation. Follow-up wet-bench experiments demonstrate that PA3923 mutants are indeed defective in biofilm formation, consistent with predictions facilitated by GAUGE and GAPE. We anticipate that GAUGE and GAPE, which we have made freely available, will make publicly available microbial transcriptomic data easier to reuse and lead to new data-driven hypotheses.IMPORTANCE GEO archives transcriptomic data from over 5,800 microbial experiments and allows researchers to answer questions not directly addressed in published papers. However, less than 4% of the microbial data sets include the sample group annotations required for high-throughput reanalysis. This limitation blocks a considerable amount of microbial transcriptomic data from being reused easily. Here, we demonstrate that the GAUGE algorithm could make 33% of microbial data accessible to parallel mining and reanalysis. GAUGE annotations increase statistical power and, thereby, make consistent patterns of differential gene expression easier to identify. In addition, we developed GAPE (GAUGE-annotated Pseudomonas aeruginosa and Escherichia coli transcriptomic compendia for reanalysis), a Shiny Web interface that performs parallel analyses on P. aeruginosa and E. coli compendia. Source code for GAUGE and GAPE is freely available and can be repurposed to create compendia for other bacterial species.

2.
Front Oncol ; 11: 815040, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35071019

RESUMO

The utility of Therapeutic Drug Monitoring (TDM) in the setting of childhood cancer is a largely underused tool, despite the common use of cytotoxic chemotherapeutics. While it is encouraging that modern advances in chemotherapy have transformed outcomes for children diagnosed with cancer, this has come at the cost of an elevated risk of life-changing long-term morbidity and late effects. This concern can limit the intensity at which these drugs are used. Widely used chemotherapeutics exhibit marked inter-patient variability in drug exposures following standard dosing, with fine margins between exposures resulting in toxicity and those resulting in potentially suboptimal efficacy, thereby fulfilling criteria widely accepted as fundamental for TDM approaches. Over the past decade in the UK, the paediatric oncology community has increasingly embraced the potential benefits of utilising TDM for particularly challenging patient groups, including infants, anephric patients and those receiving high dose chemotherapy. This has been driven by a desire from paediatric oncologists to have access to clinical pharmacology information to support dosing decisions being made. This provides the potential to modify doses between treatment cycles based on a comprehensive set of clinical information, with individual patient drug exposures being used alongside clinical response and tolerability data to inform dosing for subsequent cycles. The current article provides an overview of recent experiences of conducting TDM in a childhood cancer setting, from the perspectives of the clinicians, scientists and pharmacists implementing TDM-based dosing recommendations. The ongoing programme of work has facilitated investigations into the validity of current approaches to dosing for some of the most challenging childhood cancer patient groups, with TDM approaches now being expanded from well-established cytotoxic drugs through to newer targeted treatments.

3.
mSphere ; 3(2)2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29669884

RESUMO

Klebsiella pneumoniae is rapidly acquiring resistance to all known antibiotics, including carbapenems. Multilocus sequence type ST258 (sequence type 258), carrying a gene encoding the K. pneumoniae carbapenemase (blaKPC) on a transmissible plasmid, is the most prevalent carbapenem-resistant Enterobacteriaceae (CRE) in the United States and has disseminated worldwide. Previously, whole-genome sequencing identified core genome single nucleotide variants that divide ST258 into two distinct clades, ST258a and ST258b. Furthermore, a subset of ST258b strains have a 347-base deletion within the enterobactin (Ent) exporter gene entS Despite the predicted inability of these strains to secrete the siderophore Ent, this clade is prevalent among clinical isolates, indicating that a full-length entS gene is not necessary for infection. To compare the transcriptional responses of ST258 subtypes to iron limitation, we performed transcriptome sequencing (RNA-Seq) in minimal medium alone or supplemented with iron or human serum and measured gene expression patterns. Iron limitation induced differential expression of distinct iron acquisition pathways when comparing ST258a and ST258b strains, including the upregulation of the hemin transport operon in entS partial deletion isolates. To measure how K. pneumoniae strains vary in iron chelation and siderophore production, we performed in vitro chrome azurol S (CAS) and Arnow assays as well as mass spectrometry. We determined that both ST258a and ST258b strains grow under iron-depleted conditions, can utilize hemin for growth, and secrete Ent, despite the partial entS deletion in a subset of ST258b strains. All carbapenem-resistant (CR) K. pneumoniae strains tested were susceptible to growth inhibition by the Ent-sequestering innate immune protein lipocalin 2.IMPORTANCE Carbapenem-resistant Enterobacteriaceae, including K. pneumoniae, are a major health care concern worldwide because they cause a wide range of infection and are resistant to all or nearly all antibiotics. To cause infection, these bacteria must acquire iron, and a major mechanism of acquiring iron is by secreting a molecule called enterobactin that strips iron from host proteins. However, a subset of carbapenem-resistant K. pneumoniae strains that lack a portion of the entS gene that is required for enterobactin secretion was recently discovered. To understand how these mutant strains obtain iron, we studied their transcriptional responses, bacterial growth, and enterobactin secretion under iron-limited conditions. We found that strains both with mutated and intact entS genes grow under iron-limiting conditions, secrete enterobactin, and utilize an alternate iron source, hemin, for growth. Our data indicate that carbapenem-resistant K. pneumoniae can use varied methods for iron uptake during infection.


Assuntos
Ferro/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Sideróforos/metabolismo , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana , Genoma Bacteriano , Hemina/metabolismo , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Tipagem de Sequências Multilocus , Transcriptoma
4.
mBio ; 7(5)2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27624128

RESUMO

UNLABELLED: Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. IMPORTANCE: Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood.


Assuntos
Interações Hospedeiro-Patógeno , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/patologia , Infecções por Klebsiella/patologia , Klebsiella pneumoniae/metabolismo , Pneumonia Bacteriana/patologia , Sideróforos/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Infecções por Klebsiella/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/microbiologia , Baço/microbiologia
5.
Metallomics ; 7(6): 986-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25745886

RESUMO

Siderophores are low molecular weight, high affinity iron chelating molecules that are essential virulence factors in many Gram-negative bacterial pathogens. Whereas the chemical structure of siderophores is extremely variable, the function of siderophores has been narrowly defined as the chelation and delivery of iron to bacteria for proliferation. The discovery of the host protein Lipocalin 2, capable of specifically sequestering the siderophore Enterobactin but not its glycosylated-derivative Salmochelin, indicated that diversity in structure could be an immune evasion mechanism that provides functional redundancy during infection. However, there is growing evidence that siderophores are specialized in their iron-acquisition functions, can perturb iron homeostasis in their hosts, and even bind non-iron metals to promote bacterial fitness. The combination of siderophores produced by a pathogen can enable inter-bacterial competition, modulate host cellular pathways, and determine the bacterial "replicative niche" during infection. This review will examine both classical and novel functions of siderophores to address the concept that siderophores are non-redundant virulence factors used to enhance bacterial pathogenesis.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Sideróforos/metabolismo , Animais , Membrana Celular/metabolismo , Humanos , Ferro/metabolismo , Lipocalinas/metabolismo
6.
Rheumatology (Oxford) ; 54(6): 1114-23, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25416712

RESUMO

OBJECTIVE: SLE is an autoimmune disease characterized by autoantibody generation, organ damage and an increased risk of cardiovascular disease. Generally considered an anti-inflammatory cytokine, IL-10 is increased in SLE and correlates with poor cardiovascular outcomes in the general population. The aim of this study was to explore the putative role of IL-10 in modulating endothelial function in SLE by examining the effects of this cytokine on endothelial progenitor cell/circulating angiogenic cell (EPC/CAC) differentiation. METHODS: Human and murine control and lupus EPCs/CACs were differentiated into mature endothelial cells (ECs) in the presence or absence of graded concentrations of recombinant IL-10 with or without recombinant IFN-α or a neutralizing antibody to IL-10. IL-10-deficient mice were examined to assess the role of this cytokine in type I IFN-mediated inhibition of EC differentiation and neo-angiogenesis using an in vivo Matrigel plug assay. Serum IL-10 concentrations were measured via ELISA. RESULTS: IL-10 hampers EC differentiation in a dose-dependent manner. In murine EPC cultures, IL-10 is required to observe the inhibitory effects of type I IFNs on EPC function and neo-angiogenesis. In human SLE EPC/CAC cultures, neutralization of IL-10 significantly improved the differentiation of EPCs, and IL-10 enhanced type I IFN-mediated EPC/CAC dysfunction. The presence of IL-10 in serum inversely correlated with EPC/CAC function in SLE but not in control cells. CONCLUSION: IL-10 interferes with endothelial differentiation and may enhance the effects of type I IFN on vascular repair in SLE. IL-10 may be a relevant target for improving cardiovascular risk in SLE.


Assuntos
Diferenciação Celular/fisiologia , Células Progenitoras Endoteliais/metabolismo , Interferon-alfa/metabolismo , Interleucina-10/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Adulto , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
7.
Infect Immun ; 82(9): 3826-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980968

RESUMO

Iron is essential for many cellular processes and is required by bacteria for replication. To acquire iron from the host, pathogenic Gram-negative bacteria secrete siderophores, including enterobactin (Ent). However, Ent is bound by the host protein lipocalin 2 (Lcn2), preventing bacterial reuptake of aferric or ferric Ent. Furthermore, the combination of Ent and Lcn2 (Ent+Lcn2) leads to enhanced secretion of interleukin-8 (IL-8) compared to that induced by either stimulus alone. Modified or structurally distinct siderophores, including yersiniabactin (Ybt) and glycosylated Ent (GlyEnt, or salmochelin), deliver iron to bacteria despite the presence of Lcn2. We hypothesized that the robust immune response to Ent and Lcn2 requires iron chelation rather than the Ent+Lcn2 complex itself and also can be stimulated by Lcn2-evasive siderophores. To test this hypothesis, cultured respiratory epithelial cells were stimulated with combinations of purified siderophores and Lcn2 and analyzed by gene expression microarrays, quantitative PCR, and cytokine immunoassays. Ent caused HIF-1α protein stabilization, induced the expression of genes regulated by hypoxia-inducible factor 1α (HIF-1α), and repressed genes involved in cell cycle and DNA replication, whereas Lcn2 induced expression of proinflammatory cytokines. Iron chelation by excess Ent or Ybt significantly increased Lcn2-induced secretion of IL-8, IL-6, and CCL20. Stabilization of HIF-1α was sufficient to enhance Lcn2-induced IL-6 secretion. These data indicate that respiratory epithelial cells can respond to bacterial siderophores that evade or overwhelm Lcn2 binding by increasing proinflammatory cytokine production.


Assuntos
Proteínas de Fase Aguda/metabolismo , Proteínas de Bactérias/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Lipocalinas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sideróforos/metabolismo , Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Quimiocina CCL20/metabolismo , Replicação do DNA/fisiologia , Enterobactina/metabolismo , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lipocalina-2
8.
PLoS One ; 9(1): e86366, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24489720

RESUMO

Outside the nutrition community the effects of diet on immune-mediated diseases and experimental outcomes have not been appreciated. Investigators that study immune-mediated diseases and/or the microbiome have overlooked the potential of diet to impact disease phenotype. We aimed to determine the effects of diet on the bacterial microbiota and immune-mediated diseases. Three different laboratory diets were fed to wild-type mice for 2 weeks and resulted in three distinct susceptibilities to dextran sodium sulfate (DSS)-induced colitis. Examination of the fecal microbiota demonstrated a diet-mediated effect on the bacteria found there. Broad-spectrum antibiotics disturbed the gut microbiome and partially eliminated the diet-mediated changes in DSS susceptibility. Dietary changes 2 days after DSS treatment were protective and suggested that the diet-mediated effect occurred quickly. There were no diet-mediated effects on DSS susceptibility in germ-free mice. In addition, the diet-mediated effects were evident in a gastrointestinal infection model (Citrobacter rodentium) and in experimental autoimmune encephalomyelitis. Taken together, our study demonstrates a dominant effect of diet on immune-mediated diseases that act rapidly by changing the microbiota. These findings highlight the potential of using dietary manipulation to control the microbiome and prevent/treat immune-mediated disease.


Assuntos
Colite/dietoterapia , Dieta , Encefalomielite Autoimune Experimental/dietoterapia , Infecções por Enterobacteriaceae/dietoterapia , Vida Livre de Germes/imunologia , Microbiota/imunologia , Animais , Citrobacter rodentium/fisiologia , Colite/induzido quimicamente , Colite/imunologia , Colite/microbiologia , Sulfato de Dextrana , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/microbiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Fezes/microbiologia , Feminino , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Masculino , Camundongos
9.
J Immunol ; 186(1): 350-8, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21131417

RESUMO

Germline transcription precedes class switch recombination (CSR). The promoter regions and I exons of these germline transcripts include binding sites for activation- and cytokine-induced transcription factors, and the promoter regions/I exons are essential for CSR. Therefore, it is a strong hypothesis that the promoter/I exons regions are responsible for much of cytokine-regulated, gene-specific CSR. We tested this hypothesis by swapping the germline promoter and I exons for the murine γ1 and γ2a H chain genes in a transgene of the entire H chain C-region locus. We found that the promoter/I exon for γ1 germline transcripts can direct robust IL-4-induced recombination to the γ2a gene. In contrast, the promoter/I exon for the γ2a germline transcripts works poorly in the context of the γ1 H chain gene, resulting in expression of γ1 H chains that is <1% the wild-type level. Nevertheless, the small amount of recombination to the chimeric γ1 gene is induced by IFN-γ. These results suggest that cytokine regulation of CSR, but not the magnitude of CSR, is regulated by the promoter/I exons.


Assuntos
Citocinas/fisiologia , Éxons/genética , Switching de Imunoglobulina/genética , Regiões Promotoras Genéticas/imunologia , Recombinação Genética/genética , Animais , Células Cultivadas , Galinhas , Regulação da Expressão Gênica/imunologia , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/genética , Região de Troca de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Íntrons/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...