Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0292152, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753846

RESUMO

In the protozoan parasite Leishmania, most genes encoding for ribosomal proteins (RPs) are present as two or more copies in the genome. However, their untranslated regions (UTRs) are predominantly divergent and might be associated with a distinct regulation of the expression of paralogous genes. Herein, we investigated the expression profiles of two RPs (S16 and L13a) encoded by duplicated genes in Leishmania major. The genes encoding for the S16 protein possess identical coding sequences (CDSs) and divergent UTRs, whereas the CDSs of L13a diverge by two amino acids and by their UTRs. Using CRISPR/Cas9 genome editing, we generated knockout (Δ) and endogenously tagged transfectants for each paralog of L13a and S16 genes. Combining tagged and Δ cell lines we found evidence of differential expression of both RPS16 and RPL13a isoforms throughout parasite development, with one isoform consistently more abundant than its respective copy. In addition, compensatory expression was observed for each paralog upon deletion of the corresponding isoform, suggesting functional conservation between these proteins. This differential expression pattern relates to post-translational processes, given compensation occurs at the level of the protein, with no alterations detected at transcript level. Ribosomal profiles for RPL13a indicate a standard behavior for these paralogues suggestive of interaction with heavy RNA-protein complexes, as already reported for other RPs in trypanosomatids. We identified paralog-specific bound to their 3'UTRs which may be influential in regulating paralog expression. In support, we identified conserved cis-elements within the 3'UTRs of RPS16 and RPL13a; cis-elements exclusive to the UTR of the more abundant paralog or to the less abundant ones were identified.


Assuntos
Leishmania major , Proteínas de Protozoários , Proteínas Ribossômicas , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Leishmania major/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sistemas CRISPR-Cas , Regulação da Expressão Gênica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
2.
Nucleic Acids Res ; 51(14): 7520-7540, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37309887

RESUMO

Removal of the mRNA 5' cap primes transcripts for degradation and is central for regulating gene expression in eukaryotes. The canonical decapping enzyme Dcp2 is stringently controlled by assembly into a dynamic multi-protein complex together with the 5'-3'exoribonuclease Xrn1. Kinetoplastida lack Dcp2 orthologues but instead rely on the ApaH-like phosphatase ALPH1 for decapping. ALPH1 is composed of a catalytic domain flanked by C- and N-terminal extensions. We show that T. brucei ALPH1 is dimeric in vitro and functions within a complex composed of the trypanosome Xrn1 ortholog XRNA and four proteins unique to Kinetoplastida, including two RNA-binding proteins and a CMGC-family protein kinase. All ALPH1-associated proteins share a unique and dynamic localization to a structure at the posterior pole of the cell, anterior to the microtubule plus ends. XRNA affinity capture in T. cruzi recapitulates this interaction network. The ALPH1 N-terminus is not required for viability in culture, but essential for posterior pole localization. The C-terminus, in contrast, is required for localization to all RNA granule types, as well as for dimerization and interactions with XRNA and the CMGC kinase, suggesting possible regulatory mechanisms. Most significantly, the trypanosome decapping complex has a unique composition, differentiating the process from opisthokonts.


Assuntos
Endorribonucleases , Capuzes de RNA , Trypanosoma , Endorribonucleases/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Trypanosoma/genética
3.
J Biol Chem ; 299(1): 102726, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36410438

RESUMO

The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.


Assuntos
Proteínas , Proteômica , Biotinilação , Poro Nuclear , Proteínas/química , Proteômica/métodos , Estreptavidina/química
4.
Front Mol Biosci ; 9: 971811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275617

RESUMO

Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.

6.
Epigenetics Chromatin ; 15(1): 22, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650626

RESUMO

BACKGROUND: Genomic organization and gene expression regulation in trypanosomes are remarkable because protein-coding genes are organized into codirectional gene clusters with unrelated functions. Moreover, there is no dedicated promoter for each gene, resulting in polycistronic gene transcription, with posttranscriptional control playing a major role. Nonetheless, these parasites harbor epigenetic modifications at critical regulatory genome features that dynamically change among parasite stages, which are not fully understood. RESULTS: Here, we investigated the impact of chromatin changes in a scenario commanded by posttranscriptional control exploring the parasite Trypanosoma cruzi and its differentiation program using FAIRE-seq approach supported by transmission electron microscopy. We identified differences in T. cruzi genome compartments, putative transcriptional start regions, and virulence factors. In addition, we also detected a developmental chromatin regulation at tRNA loci (tDNA), which could be linked to the intense chromatin remodeling and/or the translation regulatory mechanism required for parasite differentiation. We further integrated the open chromatin profile with public transcriptomic and MNase-seq datasets. Strikingly, a positive correlation was observed between active chromatin and steady-state transcription levels. CONCLUSION: Taken together, our results indicate that chromatin changes reflect the unusual gene expression regulation of trypanosomes and the differences among parasite developmental stages, even in the context of a lack of canonical transcriptional control of protein-coding genes.


Assuntos
Cromatina , Trypanosoma cruzi , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Regulação da Expressão Gênica , Proteômica/métodos , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
7.
Pathogens ; 12(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36678380

RESUMO

Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.

8.
Biomolecules ; 11(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34827671

RESUMO

Ribosome profiling reveals the translational dynamics of mRNAs by capturing a ribosomal footprint snapshot. Growing evidence shows that several long non-coding RNAs (lncRNAs) contain small open reading frames (smORFs) that are translated into functional peptides. The difficulty in identifying bona-fide translated smORFs is a constant challenge in experimental and bioinformatics fields due to their unconventional characteristics. This motivated us to isolate human adipose-derived stem cells (hASC) from adipose tissue and perform a ribosome profiling followed by bioinformatics analysis of transcriptome, translatome, and ribosome-protected fragments of lncRNAs. Here, we demonstrated that 222 lncRNAs were associated with the translational machinery in hASC, including the already demonstrated lncRNAs coding microproteins. The ribosomal occupancy of some transcripts was consistent with the translation of smORFs. In conclusion, we were able to identify a subset of 15 lncRNAs containing 35 smORFs that likely encode functional microproteins, including four previously demonstrated smORF-derived microproteins, suggesting a possible dual role of these lncRNAs in hASC self-renewal.


Assuntos
RNA Longo não Codificante , Ribossomos , Fases de Leitura Aberta , RNA Mensageiro , Transcriptoma
9.
PLoS Negl Trop Dis ; 15(10): e0009899, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34705820

RESUMO

Poly(A) Binding Proteins (PABPs) are major eukaryotic RNA-binding proteins (RBPs) with multiple roles associated with mRNA stability and translation and characterized mainly from multicellular organisms and yeasts. A variable number of PABP homologues are seen in different organisms however the biological reasons for multiple PABPs are generally not well understood. In the unicellular Leishmania, dependent on post-transcriptional mechanisms for the control of its gene expression, three distinct PABPs are found, with yet undefined functional distinctions. Here, using RNA-immunoprecipitation sequencing analysis we show that the Leishmania PABP1 preferentially associates with mRNAs encoding ribosomal proteins, while PABP2 and PABP3 bind to an overlapping set of mRNAs distinct to those enriched in PABP1. Immunoprecipitation studies combined to mass-spectrometry analysis identified RBPs differentially associated with PABP1 or PABP2, including RBP23 and DRBD2, respectively, that were investigated further. Both RBP23 and DRBD2 bind directly to the three PABPs in vitro, but reciprocal experiments confirmed preferential co-immunoprecipitation of PABP1, as well as the EIF4E4/EIF4G3 based translation initiation complex, with RBP23. Other RBP23 binding partners also imply a direct role in translation. DRBD2, in contrast, co-immunoprecipitated with PABP2, PABP3 and with RBPs unrelated to translation. Over 90% of the RBP23-bound mRNAs code for ribosomal proteins, mainly absent from the transcripts co-precipitated with DRBD2. These experiments suggest a novel and specific route for translation of the ribosomal protein mRNAs, mediated by RBP23, PABP1 and the associated EIF4E4/EIF4G3 complex. They also highlight the unique roles that different PABP homologues may have in eukaryotic cells associated with mRNA translation.


Assuntos
Leishmania/metabolismo , Proteínas de Ligação a Poli(A)/metabolismo , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Leishmania/genética , Proteínas de Ligação a Poli(A)/genética , Ligação Proteica , Biossíntese de Proteínas , Proteínas de Protozoários/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética
10.
J Proteomics ; 225: 103847, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32480077

RESUMO

Trypanosome histone N-terminal sequences are very divergent from the other eukaryotes, although they are still decorated by post-translational modifications (PTMs). Here, we used a highly robust workflow to analyze histone PTMs in the parasite Trypanosoma cruzi using mass spectrometry-based (MS-based) data-independent acquisition (DIA). We adapted the workflow for the analysis of the parasite's histone sequences by modifying the software EpiProfile 2.0, improving peptide and PTM quantification accuracy. This workflow could now be applied to the study of 141 T. cruzi modified histone peptides, which we used to investigate the dynamics of histone PTMs along the metacyclogenesis and the life cycle of T. cruzi. Global levels of histone acetylation and methylation fluctuates along metacyclogenesis, however most critical differences were observed between parasite life forms. More than 66 histone PTM changes were detected. Strikingly, the histone PTM pattern of metacyclic trypomastigotes is more similar to epimastigotes than to cellular trypomastigotes. Finally, we highlighted changes at the H4 N-terminus and at H3K76 discussing their impact on the trypanosome biology. Altogether, we have optimized a workflow easily applicable to the analysis of histone PTMs in T. cruzi and generated a dataset that may shed lights on the role of chromatin modifications in this parasite. SIGNIFICANCE: Trypanosomes are unicellular parasites that have divergent histone sequences, no chromosome condensation and a peculiar genome/gene regulation. Genes are transcribed from divergent polycistronic regions and post-transcriptional gene regulation play major role on the establishment of transcripts and protein levels. In this regard, the fact that their histones are decorated with multiple PTMs raises interesting questions about their role. Besides, this digenetic organism must adapt to different environments changing its metabolism accordingly. As metabolism and epigenetics are closely related, the study of histone PTMs in trypanosomes may enlighten this strikingly, and not yet fully understood, interplay. From a biomedical perspective, the comprehensive study of molecular mechanisms associated to the metacyclogenesis process is essential to create better strategies for controlling Chagas disease.


Assuntos
Parasitos , Trypanosoma cruzi , Animais , Epigênese Genética , Histonas/metabolismo , Estágios do Ciclo de Vida , Parasitos/metabolismo , Processamento de Proteína Pós-Traducional , Trypanosoma cruzi/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-32373547

RESUMO

The integrated stress response in eukaryotic cells is an orchestrated pathway that leads to eukaryotic Initiation Factor 2 alpha subunit (eIF2α) phosphorylation at ser51 and ultimately activates pathways to mitigate cellular damages. Three putative kinases (Tck1, Tck2, and Tck3) are found in the Trypanosoma cruzi genome, the flagellated parasite that causes Chagas disease. These kinases present similarities to other eukaryotic eIF2α kinases, exhibiting a typical insertion loop in the kinase domain of the protein. We found that this insertion loop is conserved among kinase 1 of several T. cruzi strains but differs among various Kinetoplastidae species, suggesting unique roles. Kinase 1 is orthologous of GCN2 of several eukaryotes, which have been implicated in the eIF2α ser51 phosphorylation in situations that mainly affects the nutrients levels. Therefore, we further investigated the responses to nutritional stress of T. cruzi devoid of TcK1 generated by CRISPR/Cas9 gene replacement. In nutrient-rich conditions, replicative T. cruzi epimastigotes depleted of TcK1 proliferate as wild type cells but showed increased levels of polysomes relative to monosomes. Upon nutritional deprivation, the polysomes decreased more than in TcK1 depleted line. However, eIF2α is still phosphorylated in TcK1 depleted line, as in wild type parasites. eIF2α phosphorylation increased at longer incubations times, but KO parasites showed less accumulation of ribonucleoprotein granules containing ATP-dependent RNA helicase involved in mRNA turnover (DHH1) and Poly-A binding protein (PABP1). Additionally, the formation of metacyclic-trypomastigotes is increased in the absence of Tck1 compared to controls. These metacyclics, as well as tissue culture trypomastigotes derived from the TcK1 knockout line, were less infective to mammalian host cells, although replicated faster inside mammalian cells. These results indicate that GCN2-like kinase in T. cruzi affects stress granule formation, independently of eIF2α phosphorylation upon nutrient deprivation. It also modulates the fate of the parasites during differentiation, invasion, and intracellular proliferation.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Animais , Fator de Iniciação 2 em Eucariotos , Fosforilação , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , eIF-2 Quinase/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-32154189

RESUMO

The regulation of gene expression in trypanosomatids occurs mainly at the post-transcriptional level. In the case of Trypanosoma cruzi, the characterization of messenger ribonucleoprotein (mRNP) particles has allowed the identification of several classes of RNA binding proteins (RBPs), as well as non-canonical RBPs, associated with mRNA molecules. The protein composition of the mRNPs as well as the localization and functionality of the mRNAs depend on their associated proteins. mRNPs can also be organized into larger complexes forming RNA granules, which function as stress granules or P-bodies depending on the associated proteins. The fate of mRNAs in the cell, and consequently the genes expressed, depends on the set of proteins associated with the messenger molecule. These proteins allow the coordinated expression of mRNAs encoding proteins that are related in function, resulting in the formation of post-transcriptional operons. However, the puzzle posed by the combinatorial association of sets of RBPs with mRNAs and how this relates to the expressed genes remain to be elucidated. One important tool in this endeavor is the use of the CRISPR/CAS system to delete genes encoding RBPs, allowing the evaluation of their effect on the formation of mRNP complexes and associated mRNAs in the different compartments of the translation machinery. Accordingly, we recently established this methodology for T. cruzi and deleted the genes encoding RBPs containing zinc finger domains. In this manuscript, we will discuss the data obtained and the potential of the CRISPR/CAS methodology to unveil the role of RBPs in T. cruzi gene expression regulation.


Assuntos
Trypanosoma cruzi , Regulação da Expressão Gênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
13.
Methods Mol Biol ; 2116: 117-123, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221918

RESUMO

The technique of ribosome profiling is based on the isolation of sequences around 30 nucleotides in size protected by mRNA-associated ribosomes, following digestion with specific nucleases, generating a footprint. After isolation and purification, these 30-nucleotide sequences are converted to a cDNA library and analyzed by deep sequencing, providing a high-precision picture of the translation process in vivo. In addition, this powerful technique allows for the study of several biological phenomena such as alternative splicing, alternative codon usage and initiation of translation by non-AUG codons. Furthermore, the ribosome footprinting technique has proved to be very efficient for studies of ribosome pause sites on mRNAs, which could act as key regulators in the translation process. Here we describe a modified protocol of the ribosome footprinting technique for translation efficiency analysis in Trypanosoma cruzi.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Iniciação Traducional da Cadeia Peptídica/genética , Ribossomos/genética , Trypanosoma cruzi/genética , Processamento Alternativo/genética , Sequência de Bases/genética , Uso do Códon/genética , Biblioteca Gênica , Parasitologia/métodos , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/isolamento & purificação , RNA de Protozoário/metabolismo , Ribossomos/metabolismo
14.
J Proteomics, v. 225, 103847, ago. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3126

RESUMO

Trypanosome histone N-terminal sequences are very divergent from the other eukaryotes, although they are still decorated by post-translational modifications (PTMs). Here, we used a highly robust workflow to analyze histone PTMs in the parasite Trypanosoma cruzi using mass spectrometry-based (MS-based) data-independent acquisition (DIA). We adapted the workflow for the analysis of the parasite's histone sequences by modifying the software EpiProfile 2.0, improving peptide and PTM quantification accuracy. This workflow could now be applied to the study of 141 T. cruzi modified histone peptides, which we used to investigate the dynamics of histone PTMs along the metacyclogenesis and the life cycle of T. cruzi. Global levels of histone acetylation and methylation fluctuates along metacyclogenesis, however most critical differences were observed between parasite life forms. More than 66 histone PTM changes were detected. Strikingly, the histone PTM pattern of metacyclic trypomastigotes is more similar to epimastigotes than to cellular trypomastigotes. Finally, we highlighted changes at the H4 N-terminus and at H3K76 discussing their impact on the trypanosome biology. Altogether, we have optimized a workflow easily applicable to the analysis of histone PTMs in T. cruzi and generated a dataset that may shed lights on the role of chromatin modifications in this parasite.

15.
Mem Inst Oswaldo Cruz ; 113(6): e170531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29924141

RESUMO

BACKGROUND Eukaryotic ribonucleoprotein (RNP) granules are important for the regulation of RNA fate. RNP granules exist in trypanosomatids; however, their roles in controlling gene expression are still not understood. XRNA is a component of granules in Trypanosoma brucei but has not been investigated in Trypanosoma cruzi. OBJECTIVES This study aimed to investigate the TcXRNA dynamic assembly and its interaction with RNP components under conditions that affect the mRNA availability. METHODS We used in vitro metacyclogenesis of T. cruzi to observe changes in RNP granules during the differentiation process. TcXRNA expression was analysed by Western blot and immunofluorescence. Colocalisation assays were performed to investigate the interaction of TcXRNA with other RNP components. FINDINGS TcXRNA is constantly present during metacyclogenesis and is localised in cytoplasmic granules. TcXRNA does not colocalise with TcDHH1 and TcCAF1 granules in the cytoplasm. However, TcXRNA granules colocalise with mRNP granules at the nuclear periphery when mRNA processing is inhibited. MAIN CONCLUSIONS TcXRNA plays a role in mRNA metabolism as a component of mRNP granules whose assembly is dependent on mRNA availability. TcXRNA granules colocalise with distinct RNP granules at the nuclear periphery, suggesting that the perinuclear region is a regulatory compartment in T. cruzi mRNA metabolism.


Assuntos
Grânulos Citoplasmáticos/genética , Proteínas de Protozoários/genética , RNA de Protozoário/genética , Ribonucleoproteínas/genética , Trypanosoma cruzi/citologia , Western Blotting , Grânulos Citoplasmáticos/fisiologia , Imunofluorescência , Membrana Nuclear/fisiologia , Proteínas de Protozoários/fisiologia , RNA de Protozoário/fisiologia , Ribonucleoproteínas/fisiologia , Trypanosoma cruzi/genética
16.
Mem. Inst. Oswaldo Cruz ; 113(6): e170531, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-955110

RESUMO

BACKGROUND Eukaryotic ribonucleoprotein (RNP) granules are important for the regulation of RNA fate. RNP granules exist in trypanosomatids; however, their roles in controlling gene expression are still not understood. XRNA is a component of granules in Trypanosoma brucei but has not been investigated in Trypanosoma cruzi. OBJECTIVES This study aimed to investigate the TcXRNA dynamic assembly and its interaction with RNP components under conditions that affect the mRNA availability. METHODS We used in vitro metacyclogenesis of T. cruzi to observe changes in RNP granules during the differentiation process. TcXRNA expression was analysed by Western blot and immunofluorescence. Colocalisation assays were performed to investigate the interaction of TcXRNA with other RNP components. FINDINGS TcXRNA is constantly present during metacyclogenesis and is localised in cytoplasmic granules. TcXRNA does not colocalise with TcDHH1 and TcCAF1 granules in the cytoplasm. However, TcXRNA granules colocalise with mRNP granules at the nuclear periphery when mRNA processing is inhibited. MAIN CONCLUSIONS TcXRNA plays a role in mRNA metabolism as a component of mRNP granules whose assembly is dependent on mRNA availability. TcXRNA granules colocalise with distinct RNP granules at the nuclear periphery, suggesting that the perinuclear region is a regulatory compartment in T. cruzi mRNA metabolism.


Assuntos
Humanos , RNA/sangue , RNA Mensageiro/análise , Metaciclina/uso terapêutico , RNA Nuclear Pequeno
17.
Stem Cell Res ; 25: 191-201, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29156375

RESUMO

Commitment of adult stem cells involves the activation of specific gene networks regulated from transcription to protein synthesis. Here, we used ribosome profiling to identify mRNAs regulated at the translational level, through both differential association to polysomes and modulation of their translational rates. We observed that translational regulation during the differentiation of human adipose-derived stromal cells (hASCs, also known as adipose-derived mesenchymal stem cells), a subset of which are stem cells, to adipocytes was a major regulatory event. hASCs showed a significant reduction of whole protein synthesis after adipogenic induction and a downregulation of the expression and translational efficiency of ribosomal proteins. Additionally, focal adhesion and cytoskeletal proteins were downregulated at the translational level. This negative regulation of the essential biological functions of hASCs resulted in a reduction in cell size and the potential of hASCs to migrate. We analyzed whether the inactivation of key translation initiation factors was involved in this observed major repression of translation. We showed that there was an increase in the hypo phosphorylated forms of 4E-BP1, a negative regulator of translation, during early adipogenesis. Our results showed that extensive translational regulation occurred during the early stage of the adipogenic differentiation of hASCs.


Assuntos
Adipócitos/metabolismo , Adipogenia , Células-Tronco Mesenquimais/metabolismo , Biossíntese de Proteínas , Células Estromais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/citologia , Proteínas de Ciclo Celular , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Células-Tronco Mesenquimais/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Células Estromais/citologia
18.
BMC Genomics ; 16: 443, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26054634

RESUMO

BACKGROUND: Due to the absence of transcription initiation regulation of protein coding genes transcribed by RNA polymerase II, posttranscriptional regulation is responsible for the majority of gene expression changes in trypanosomatids. Therefore, cataloging the abundance of mRNAs (transcriptome) and the level of their translation (translatome) is a key step to understand control of gene expression in these organisms. RESULTS: Here we assess the extent of regulation of the transcriptome and the translatome in the Chagas disease causing agent, Trypanosoma cruzi, in both the non-infective (epimastigote) and infective (metacyclic trypomastigote) insect's life stages using RNA-seq and ribosome profiling. The observed steady state transcript levels support constitutive transcription and maturation implying the existence of distinctive posttranscriptional regulatory mechanisms controlling gene expression levels at those parasite stages. Meanwhile, the downregulation of a large proportion of the translatome indicates a key role of translation control in differentiation into the infective form. The previously described proteomic data correlate better with the translatomes than with the transcriptomes and translational efficiency analysis shows a wide dynamic range, reinforcing the importance of translatability as a regulatory step. Translation efficiencies for protein families like ribosomal components are diminished while translation of the transialidase virulence factors is upregulated in the quiescent infective metacyclic trypomastigote stage. CONCLUSIONS: A large subset of genes is modulated at the translation level in two different stages of Trypanosoma cruzi life cycle. Translation upregulation of virulence factors and downregulation of ribosomal proteins indicates different degrees of control operating to prepare the parasite for an infective life form. Taking together our results show that translational regulation, in addition to regulation of steady state level of mRNA, is a major factor playing a role during the parasite differentiation.


Assuntos
Perfilação da Expressão Gênica/métodos , Proteômica/métodos , Ribossomos/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Estágios do Ciclo de Vida , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/análise , RNA de Protozoário/análise , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Regulação para Cima
19.
FEBS J ; 277(16): 3415-26, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20629747

RESUMO

In trypanosomatids, the regulation of gene expression occurs mainly at the post-transcriptional level. Previous studies have revealed nontranslated mRNA in the Trypanosoma cruzi cytoplasm. Previously, we have identified and cloned the TcDHH1 protein, a DEAD box RNA helicase. It has been reported that Dhh1 is involved in multiple RNA-related processes in various eukaryotes. It has also been reported to accumulate in stress granules and processing bodies of yeast, animal cells, Trypanosoma brucei and T. cruzi. TcDHH1 is localized to discrete cytoplasmic foci that vary depending on the life cycle status and nutritional conditions. To study the composition of mRNPs containing TcDHH1, we carried out immunoprecipitation assays with anti-TcDHH1 using epimastigote lysates. The protein content of mRNPs was determined by MS and pre-immune serum was used as control. We also carried out a ribonomic approach to identify the mRNAs present within the TcDHH1 immunoprecipitated complexes. For this purpose, competitive microarray hybridizations were performed against negative controls, the nonprecipitated fraction. Our results showed that mRNAs associated with TcDHH1 in the epimastigote stage are those mainly expressed in the other forms of the T. cruzi life cycle. These data suggest that mRNPs containing TcDHH1 are involved in mRNA metabolism, regulating the expression of at least epimastigote-specific genes.


Assuntos
RNA Helicases DEAD-box/química , RNA Mensageiro/metabolismo , Ribonucleoproteínas/química , Trypanosoma cruzi/enzimologia , Animais , Western Blotting , RNA Helicases DEAD-box/metabolismo , Regulação Enzimológica da Expressão Gênica , Estágios do Ciclo de Vida , Análise Serial de Proteínas , Ribonucleoproteínas/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/crescimento & desenvolvimento
20.
Gene ; 452(2): 72-8, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20060445

RESUMO

Gene regulation is mainly post-transcriptional in trypanosomatids. The stability of mRNA and access to polysomes are thought to be tightly regulated, allowing Trypanosoma cruzi to adapt to the different environmental conditions during its life cycle. Post-transcriptional regulation requires the association between mRNAs and certain proteins to form mRNP complexes. We investigated the dynamic association between proteins and mRNAs, using poly(T) beads to isolate and characterize proteins and protein complexes bound to poly-A+ mRNAs. The protein content of these fractions was analyzed by mass spectrometry (LC-MS/MS). We identified 542 protein component of the mRNP complexes associated with mRNAs. Twenty-four of the proteins obtained were present in all fractions, whereas some other proteins were exclusive to a particular fraction: epimastigote polysomal (0.37%) and post-polysomal (2.95%) fractions; stress polysomal (13.8%) and post-polysomal (40.78%) fractions. Several proteins known to be involved in mRNA metabolism were identified, and this was considered important as it made it possible to confirm the reliability of our mRNP isolation approach. This procedure allowed us to have a first insight into the composition and dynamics of mRNPs in T. cruzi.


Assuntos
Biossíntese de Proteínas , Proteoma/análise , Proteínas de Protozoários/análise , RNA Mensageiro/genética , Ribonucleoproteínas/análise , Trypanosoma cruzi/química , Animais , Polirribossomos/química , Ligação Proteica , Proteoma/genética , Proteoma/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...