Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomicro Lett ; 13(1): 178, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34402993

RESUMO

As promising anodes for sodium-ion batteries, metal sulfides ubiquitously suffer from low-rate and high-plateau issues, greatly hindering their application in full-cells. Herein, exemplifying carbon nanotubes (CNTs)-stringed metal sulfides superstructure (CSC) assembled by nano-dispersed SnS2 and CoS2 phases, cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges. The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect, enabling the circumvention of intrinsic drawbacks of different metal sulfides. By utilizing ether-based electrolyte, the reversibility of metal sulfides is greatly improved, sustaining a long-life effectivity of cocktail-like mediation. As such, CSC effectively overcomes low-rate flaw of SnS2 and high-plateau demerit of CoS2, simultaneously realizes a high rate and a low plateau. In half-cells, CSC delivers an ultrahigh-rate capability of 327.6 mAh g-1anode at 20 A g-1, far outperforming those of monometallic sulfides (SnS2, CoS2) and their mixtures. Compared with CoS2 phase and SnS2/CoS2 mixture, CSC shows remarkably lowered average charge voltage up to ca. 0.62 V. As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability (0.05 ~ 1.0 A g-1, 120.3 mAh g-1electrode at 0.05 A g-1) and a high average discharge voltage up to 2.57 V, comparable to full-cells with alloy-type anodes. Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC, compared with single phase and mixed phases. Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS2 and CoS2 phases are responsible for the lowered charge voltage of CSC. This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes, which will boost the development of high-rate/-voltage sodium-ion full batteries.

2.
Phys Chem Chem Phys ; 22(32): 18102-18113, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32760990

RESUMO

Ionic liquids and plastic crystals based on pyrrolidinium cations are recognised for their advantageous properties such as high conductivity, low viscosity, and good electrochemical and thermal stability. The pyrrolidinium ring can be substituted with symmetric or asymmetric alkyl chain substituents to form a range of ionic liquids or plastic crystals depending on the anion. However, reports into the use of branched alkyl chains and how this influences the material properties are limited. Here, we report the synthesis of six salts - ionic liquids and organic ionic plastic crystals - where the typically used linear propyl chain substituent is replaced by the branched alternative, isopropyl, to form the cation [C(i3)mpyr]+, in combination with six different anions: dicyanamide, (fluorosulfonyl)(trifluoromethanesulfonyl)imide, bis(trifluoromethanesulfonyl)imide, bis(fluorosulfonyl)imide, tetrafluoroborate and hexafluorophosphate. The thermal and transport properties of these salts are compared to those of the analogous N-propyl-N-methylpyrrolidinium and N,N-diethylpyrrolidinium-based salts. Finally, a high lithium salt content ionic liquid electrolyte based on the bis(fluorosulfonyl)imide salt was developed. This electrolyte showed high coulombic efficiencies of lithium plating/stripping and high lithium ion transference number, making it a strong candidate for use in lithium metal batteries.

3.
Sci Adv ; 6(1): eaay2757, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922008

RESUMO

Lithium-sulfur batteries can displace lithium-ion by delivering higher specific energy. Presently, however, the superior energy performance fades rapidly when the sulfur electrode is loaded to the required levels-5 to 10 mg cm-2- due to substantial volume change of lithiation/delithiation and the resultant stresses. Inspired by the classical approaches in particle agglomeration theories, we found an approach that places minimum amounts of a high-modulus binder between neighboring particles, leaving increased space for material expansion and ion diffusion. These expansion-tolerant electrodes with loadings up to 15 mg cm-2 yield high gravimetric (>1200 mA·hour g-1) and areal (19 mA·hour cm-2) capacities. The cells are stable for more than 200 cycles, unprecedented in such thick cathodes, with Coulombic efficiency above 99%.

4.
Phys Chem Chem Phys ; 21(23): 12288-12300, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31139779

RESUMO

The synthesis and characterisation of new solid-state electrolytes is a key step in advancing the development of safer and more reliable electrochemical energy storage technologies. Organic ionic plastic crystals (OIPCs) are an increasingly promising class of material for application in devices such as lithium or sodium metal batteries as they can support high ionic conductivity, with good electrochemical and thermal stability. However, the choice of OIPC-forming ions is still relatively limited. Furthermore, understanding of the influence of different cations and anions on the thermal, structural and transport properties of these materials is still in its infancy. Here we report the synthesis and in-depth characterisation of a range of new OIPCs utilising the hexamethylguanidinium cation ([HMG]) with five different anions. The thermal, structural, transport properties and free volume in the different salts have been investigated. The free volume within the salts has been investigated by positron annihilation lifetime spectroscopy, and the single crystal and powder X-ray diffraction analysis of [HMG] bis(trifluoromethanesulfonyl)imide ([TFSI]) in phase I and II, [HMG] hexafluorophosphate ([PF6]) and [HMG] tetrafluoroborate ([HMG][BF4]) are reported. The HMG cation can exhibit significant disorder, which is advantageous for plasticity and future use of these materials as high ionic conductivity matrices. The bis(fluorosulfonyl)imide salt, [HMG][FSI], is identified as particularly promising for use as an electrolyte, with good electrochemical stability and soft mechanical properties. The findings introduce a range of new materials to the solid-state electrolyte arena, while the insights into the physico-chemical relationships in these materials will be of importance for the future development and understanding of other ionic electrolytes.

5.
ACS Appl Mater Interfaces ; 11(14): 13194-13204, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30912440

RESUMO

The lithium-sulfur battery (LSB) is a promising candidate for future energy storage but faces technological challenges including the low electronic conductivity of sulfur and the solubility of intermediates during cycling. Additionally, current host materials often lack sufficient conductivity and porosity to raise the sulfur loading to over 80 wt %. Here, ordered mesoporous graphitic carbon/iron carbide nanocomposites were prepared via an evaporation-induced self-assembly process using soluble resol, prehydrolyzed tetraethyl orthosilicate (TEOS), and iron(III) chloride as the carbon, silica (SiO2), and iron precursors, respectively. Graphitization and SiO2 etching were conducted simultaneously via Teflon-assisted, solid-state decomposition at high temperature. A high surface area (∼3100 m2 g-1), large pore volume (∼3.3 cm3 g-1), and graphitized carbon frame were achieved, giving a high sulfur loading (85 wt %) while tolerating volumetric expansion during discharge. Electrochemical testing of a LSB containing the composite/sulfur cathode exhibited a superior reversible capacity exceeding 1300 mAh g-1 at a moderate current (C/10) and a low decay in capacity of 9% after 500 cycles at C/5. The interaction between mesoporous graphitic carbon and sulfur is proposed.

6.
Angew Chem Int Ed Engl ; 58(13): 4390-4394, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30632254

RESUMO

The synthesis of a new imide type anion, methylcarbonate(trifluoromethylsulfonyl)imide (MCTFSI) is described and the physicochemical properties of its sodium and N-butyl-N-methyl pyrrolidinium salts as well as structural information obtained by X-ray diffraction studies of the sodium salt are discussed in terms of charge delocalisation, coordination chemistry and electrochemical behaviour with respect to the analogous imdides bis(trifluoromethanesulfonyl)imide (TFSI) and bis(fluorosulfonyl)imide (FSI). The insight obtained from studying the new anion informs and reemphasizes the concept of weakly coordinating anions and coordination chemistry in designing electrolyte salts.

7.
Chem Commun (Camb) ; 54(29): 3660-3663, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29578230

RESUMO

Contrary to the accepted wisdom that avoids cation symmetry for the sake of optimum electrolyte properties, we reveal outstanding behaviour for the diethylpyrrolidinium cation ([C2epyr]), in combination with the bis(fluorosulfonyl)imide (FSI) anion and Li[FSI]. The equimolar [C2epyr][Li][FSI]2 is a liquid with high conductivity, high Li transference number and >90% lithium metal cycling efficiency. The high level of performance for these electrolytes invites consideration of a new class of electrolytes for lithium batteries.

8.
Phys Chem Chem Phys ; 18(42): 29337-29347, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27734040

RESUMO

The electrochemical systems containing zinc dicyanamide salt (Zn(dca)2) in both 1-ethyl-3-methylimidazolium dicyanamide ([C2mim][dca]) and N-butyl-N-methylpyrrolidinium dicyanamide ([C4mpyr][dca]) ionic liquids (ILs) have been studied by atomic force microscopy (AFM) on a highly oriented pyrolytic graphite (HOPG) surface under different conditions and applied potentials. The results reveal the following: (1) interfacial layers exist in both ILs, even after the addition of 3 wt% water and 9 mol% Zn(dca)2 salt. (2) The number of layers is different for the different ILs, with the [C2mim][dca]-based samples exhibiting a much more limited interfacial structure compared to the [C4mpyr][dca] at almost all of the tested conditions. (3) For the [C4mpyr][dca]-based samples, without added zinc salt, the number of detected interfacial layers increases with negative potential. With added zinc, the [C4mpyr][dca] sample shows about the same number of layers independent of the applied potentials, namely between 5-7. Likewise, for the [C2mim][dca] samples, with the zinc added the sample shows the same number of layers at the applied potentials, but for this system only 1-2 layers are detected. And (4) the addition of Zn(dca)2 into the [C2mim][dca] IL does not cause a large change in the interfacial ordering, whereas the addition of the same salt into the [C4mpyr][dca] samples is marked by a stark increase in both the number and the consistency of the perceived interfacial layers. These results are significant because they show a marked difference in the interfacial nanostructure between two zinc-based electrochemical systems that were previously shown to have distinctly different electrochemical behaviour, despite their chemical similarity.

10.
Anal Chem ; 88(3): 1915-21, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26708364

RESUMO

The electrochemical behavior of iodine remains a contemporary research interest due to the integral role of the I(-)/I3(-) couple in dye-sensitized solar cell technology. The neutral (I2) and positive (I(+)) oxidation states of iodine are known to be strongly electrophilic, and thus the I(-)/I2/I(+) redox processes are sensitive to the presence of nucleophilic chloride or bromide, which are both commonly present as impurities in nonhaloaluminate room temperature ionic liquids (ILs). In this study, the electrochemistry of I(-), I2, and ICl has been investigated by cyclic voltammetry at a platinum macrodisk electrode in a binary IL mixture composed of 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C2mim][NTf2]). In the absence of chloride (e.g., in neat [C2mim][NTf2]), I(-) is oxidized in an overall one electron per iodide ion process to I2 via an I3(-) intermediate, giving rise to two resolved I(-)/I3(-) and I3(-)/I2 processes, as per previous reports. In the presence of low concentrations of chloride ([Cl(-)] and [I(-)] are both <30 mM), an additional oxidation process appears at potentials less positive than the I3(-)/I2 process, which corresponds to the oxidation of I3(-) to the interhalide complex anion [ICl2](-), in an overall two electron per iodide ion process. In the presence of a large excess of Cl(-) ([I(-)] ≈ 10 mM and [Cl(-)] ≈ 3.7 M), I(-) is oxidized in an overall two electron per iodide ion process to [ICl2](-) via an [I2Cl](-) intermediate (confirmed by investigating the voltammetric response of ICl and I2 under these conditions). In summary, the I(-)/I2/I(+) processes in nonhaloaluminate ILs involve a complicated interplay between multiple electron transfer pathways and homogeneous chemical reactions which may not be at equilibrium on the voltammetric time scale.

11.
Nanoscale ; 7(42): 17947-56, 2015 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-26463503

RESUMO

To achieve high efficiency lithium ion batteries (LIBs), an effective active material is important. In this regard, monodisperse mesoporous titania beads (MMTBs) featuring well interconnected nanoparticles were synthesised, and their mesoporous properties were tuned to study how these affect the electrochemical performance in LIBs. Two pore diameters of 15 and 25 nm, three bead diameters of 360, 800 and 2100 nm, and various annealing temperatures (from 300 to 650 °C) were investigated. The electrochemical results showed that while the pore size does not significantly influence the electrochemical behaviour, the specific surface area and the nanocrystal size affect the performance. Also, there is an optimum annealing temperature that enhances electron transfer across the titania bead structure. The carbon content employed in the electrode was varied, showing that the bead diameter strongly influences the minimal content of the conductive carbon required to fabricate the electrode. As a general rule, the smaller the bead diameter, the more carbon was required in the electrode. A large energy capacity and high current rate performance were achieved on the MMTBs featuring high surface area, nano-sized anatase crystals and well-sintered connections between the nanocrystals. The high stability of these mesoporous structures was demonstrated by charge/discharge cycling up to 500 cycles. Devices constructed with the MMTBs retained more than 80% of the initial capacity, indicating an excellent performance.

12.
Front Chem ; 2: 79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309898

RESUMO

Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

13.
Anal Chem ; 86(4): 2073-81, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24444296

RESUMO

The robustness of convolution voltammetry for determining accurate values of the diffusivity (D), bulk concentration (C(b)), and stoichiometric number of electrons (n) has been demonstrated by applying the technique to a series of electrode reactions in molecular solvents and room temperature ionic liquids (RTILs). In acetonitrile, the relatively minor contribution of nonfaradaic current facilitates analysis with macrodisk electrodes, thus moderate scan rates can be used without the need to perform background subtraction to quantify the diffusivity of iodide [D = 1.75 (±0.02) × 10(-5) cm(2) s(-1)] in this solvent. In the RTIL 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, background subtraction is necessary at a macrodisk electrode but can be avoided at a microdisk electrode, thereby simplifying the analytical procedure and allowing the diffusivity of iodide [D = 2.70 (±0.03) × 10(-7) cm(2) s(-1)] to be quantified. Use of a convolutive procedure which simultaneously allows D and nC(b) values to be determined is also demonstrated. Three conditions under which a technique of this kind may be applied are explored and are related to electroactive species which display slow dissolution kinetics, undergo a single multielectron transfer step, or contain multiple noninteracting redox centers using ferrocene in an RTIL, 1,4-dinitro-2,3,5,6-tetramethylbenzene, and an alkynylruthenium trimer, respectively, as examples. The results highlight the advantages of convolution voltammetry over steady-state techniques such as rotating disk electrode voltammetry and microdisk electrode voltammetry, as it is not restricted by the mode of diffusion (planar or radial), hence removing limitations on solvent viscosity, electrode geometry, and voltammetric scan rate.

14.
Anal Chem ; 85(23): 11319-25, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24143954

RESUMO

The electro-oxidation of iodide on a gold electrode in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide has been investigated using transient cyclic voltammetry, linear-sweep semi-integral voltammetry, an electrochemical quartz crystal microbalance technique, and coulometry/electrogravimetry. Two oxidation processes are observed, with an electron stoichiometry of 1:1, compared with the well-known 2:1 electron stoichiometry observed on other commonly used electrode materials, such as platinum, glassy carbon, and boron-doped diamond, under identical conditions. Detailed mechanistic information, obtained in situ using an electrochemical quartz crystal microbalance, reveals that this unusual observation can be attributed to the dissolution of the gold electrode in the presence of iodide. Coulometric/electrogravimetric analysis suggests that the oxidation state of the soluble gold species is +1 and that diiodoaurate, [AuI2](-), is the likely intermediate. A proportionally smaller amount of triiodide intermediate is also detected by means of UV-vis spectroscopy. On this basis, it is proposed that iodide oxidation on gold occurs via two parallel pathways: predominantly via a diiodoaurate intermediate 2I(-) + Au ⇌ [AuI2](-) + e(-) and [AuI2](-) ⇌ I2 + Au + e(-) and to a lesser extent via a triiodide intermediate 3I(-) ⇌ I3(-) + 2e(-) and I3(-) ⇌ 3/2I2 + e(-). This proposed mechanism was further supported by voltammetric investigations with an authentic sample of the anionic [AuI2](-) complex.

15.
Anal Chem ; 85(4): 2239-45, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23249171

RESUMO

While it is common to determine diffusion coefficients from steady-state voltammetric limiting current values, derived from microelectrode/rotating disk electrode measurements or transient peak currents at macroelectrodes, application of these methods is problematic in highly viscous ionic liquids. This study shows that the semi-integral electroanalysis technique is highly advantageous under these circumstances, and it has allowed the diffusion coefficient of cobaltocenium, [Co(Cp)(2)](+) (simple redox process), and iodide, I(-) (complex redox mechanism), to be determined in the highly viscous ionic liquid 1-methyl-3-octylimidazolium hexafluorophosphate (viscosity = 866 cP at 20 °C) from transient voltammograms obtained using a 1.6 mm diameter Pt electrode. In such a viscous medium, a near-steady-state current is not attainable with a 10 µm diameter microdisk electrode or a 3 mm diameter Pt rotating disk electrode, while peak currents at a macrodisk are subject to ohmic drop problems and the analysis is hampered by difficulties in modeling the processes involved in the oxidation of iodide. The diffusion coefficients of [Co(Cp)(2)](+) and I(-) were determined to be 9.4 (±0.3) × 10(-9) cm(2) s(-1) and 7.3 (±0.3) × 10(-9) cm(2) s(-1), respectively. These results highlight the utility of the semi-integral electroanalysis technique for quantifying the diffusivity of electroactive species in high viscosity media, where the use of steady-state techniques and transient peak currents is often limited.

16.
Phys Chem Chem Phys ; 14(13): 4597-604, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22354216

RESUMO

Replacement of volatile and combustible electrolytes in conventional lithium batteries is desirable for two reasons: safety concerns and increase in specific energy. In this work we consider the use of an ionic organic plastic crystal material (IOPC), N-ethyl-N-methylpyrrolidinium tetrafluoroborate, [C2mpyr][BF(4)], as a solid-state electrolyte for lithium battery applications. The effect of inclusion of 1 to 33 mol% lithium tetrafluoroborate, LiBF(4), into [C2mpyr][BF(4)] has been investigated over a wide temperature range by differential scanning calorimetry (DSC), impedance spectroscopy, cyclic voltammetry and cycling of full Li|LiFePO(4) batteries. The increases in ionic conductivity by orders of magnitude observed at higher temperature are most likely associated with an increase in Li ion mobility in the highest plastic phase. At concentrations >5 mol% LiBF(4) the ionic conductivity of these solid-state composites is comparable to the ionic conductivity of room temperature ionic liquids. Galvanostatic cycling of Li|Li symmetrical cells showed that the reversibility of the lithium metal redox reaction at the interface of this plastic crystal electrolyte is sufficient for lithium battery applications. For the first time we demonstrate an all solid state lithium battery incorporating solid electrolytes based on IOPC as opposed to conventional flammable organic solvents.

17.
J Phys Chem B ; 115(21): 6843-52, 2011 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-21545156

RESUMO

Electrochemical studies in room temperature ionic liquids are often hampered by their relatively high viscosity. However, in some circumstances, fast exchange between participating electroactive species has provided beneficial enhancement of charge transport. The iodide (I¯)/iodine (I(2))/triiodide (I(3)¯) redox system that introduces exchange via the I¯ + I(2) ⇌ I(3)¯ process is a well documented example because it is used as a redox mediator in dye-sensitized solar cells. To provide enhanced understanding of ion movement in RTIL media, a combined electrochemical and NMR study of diffusion in the {SeCN¯-(SeCN)(2)-(SeCN)(3)¯} system has been undertaken in a selection of commonly used RTILs. In this system, each of the Se, C and N nuclei is NMR active. The electrochemical behavior of the pure ionic liquid, [C(4)mim][SeCN], which is synthesized and characterized here for the first time, also has been investigated. Voltammetric studies, which yield readily interpreted diffusion-limited responses under steady-state conditions by means of a Random Assembly of Microdisks (RAM) microelectrode array, have been used to measure electrochemically based diffusion coefficients, while self-diffusion coefficients were measured by pulsed field gradient NMR methods. The diffusivity data, derived from concentration and field gradients respectively, are in good agreement. The NMR data reveal that exchange processes occur between selenocyanate species, but the voltammetric data show the rates of exchange are too slow to enhance charge transfer. Thus, a comparison of the iodide and selenocyanate systems is somewhat paradoxical in that while the latter give RTILs of low viscosity, sluggish exchange kinetics prevent any significant enhancement of charge transfer through direct electron exchange. In contrast, faster exchange between iodide and its oxidation products leads to substantial electron exchange but this effect does not compensate sufficiently for mass transport limitations imposed by the higher viscosity of iodide RTILs.

18.
Phys Chem Chem Phys ; 13(22): 10729-40, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21552629

RESUMO

Density functional theory calculations of alkyl-carboxylate anions and their sulfur substituted variants are presented here as an aid for the development of new ionic liquids. Electron transfer both within the anion, and between the anion and cation of an ion pair, are described using natural bond order analysis, using tetraethylammonium as a common cation. The overall stabilising effect of this electron transfer is quantified for the series of anions, and is found to correlate with clear trends in ion-pair binding energy. These and other electronic properties determine which compounds are synthesised, and experimental results validate the computational results. In combination with tetraethylammonium, a carboxylate with an unsaturated alkyl chain produces an ionic liquid at room temperature. However, computations suggest that sulfur substituted anions will produce a lower melting point and perhaps more fluid ionic liquid, but one which would be less stable against oxidation.

19.
Nat Mater ; 9(6): 504-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20473288

RESUMO

Lithium metal has the highest volumetric and gravimetric energy density of all negative-electrode materials when used as an electrode material in a lithium rechargeable battery. However, the formation of lithium dendrites and/or 'moss' on the metal electrode surface can lead to short circuits following several electrochemical charge-discharge cycles, particularly at high rates, rendering this class of batteries potentially unsafe and unusable owing to the risk of fire and explosion. Many recent investigations have focused on the development of methods to prevent moss/dendrite formation. In parallel, it is important to quantify Li-moss formation, to identify the conditions under which it forms. Although optical and electron microscopy can visually monitor the morphology of the lithium-electrode surface and hence the moss formation, such methods are not well suited for quantitative studies. Here we report the use of in situ NMR spectroscopy, to provide time-resolved, quantitative information about the nature of the metallic lithium deposited on lithium-metal electrodes.

20.
Phys Chem Chem Phys ; 11(42): 9884-97, 2009 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19851568

RESUMO

We have performed atomistic molecular dynamics (MD) simulations of the (010) surface of LiFePO(4) in contact with an organic liquid electrolyte (OLE), ethylene carbonate : dimethyl carbonate (3 : 7) with approximately 1 mol kg(-1) LiPF(6), and an ionic liquid-based electrolyte (ILE), 1-ethyl 3-methyl-imidazolium: bis(fluorosulfonyl)imide (EMIM(+) : FSI(-)) with approximately 1 mol kg(-1) LiFSI. Surface-induced structure that extends about 1 nm from the LiFePO(4) surface was observed in both electrolytes. The electrostatic potential at the LiFePO(4) surface was found to be negative relative to the bulk electrolyte reflecting an excess of negative charge from the electrolyte coordinating surface Li(+). In the ILE system negative surface charge is partially offset by a high density of EMIM(+) cations coordinating surface oxygen. The electrostatic potential exhibits a (positive) maximum about 3 A from the LiFePO(4) surface which, when combined with the reduced ability of the highly structured electrolytes to solvate Li(+) cations, results in a free energy barrier of almost 4 kcal mol(-1) for penetration of the interfacial electrolyte layer by Li(+). The resistance for bringing Li(+) from the bulk electrolyte to the LiFePO(4) surface through this interfacial barrier was found to be small for both the OLE and ILE. However, we find that the ability of EMIM(+) cations to donate positive charge to LiFePO(4)/electrolyte interface may result in a significant decrease in the concentration of Li(+) at the surface and a corresponding increase in impedance to Li(+) intercalation into LiFePO(4), particularly at lower temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...