Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 361: 694-716, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567507

RESUMO

Extracellular vesicles (EVs) are nanosized intercellular messengers that bear enormous application potential as biological drug delivery vehicles. Much progress has been made for loading or decorating EVs with proteins, peptides or RNAs using genetically engineered donor cells, but post-isolation loading with synthetic drugs and using EVs from natural sources remains challenging. In particular, quantitative and unambiguous data assessing whether and how small molecules associate with EVs versus other components in the samples are still lacking. Here we describe the systematic and quantitative characterisation of passive EV loading with small molecules based on hydrophobic interactions - either through direct adsorption of hydrophobic compounds, or by membrane anchoring of hydrophilic ligands via cholesterol tags. As revealed by single vesicle imaging, both ligand types bind to CD63 positive EVs (exosomes), however also non-specifically to other vesicles, particles, and serum proteins. The hydrophobic compounds Curcumin and Terbinafine aggregate on EVs with no apparent saturation up to 106-107 molecules per vesicle as quantified by liquid chromatography - high resolution mass spectrometry (LC-HRMS). For both compounds, high density EV loading resulted in the formation of a population of large, electron-dense vesicles as detected by quantitative cryo-transmission electron microscopy (TEM), a reduced EV cell uptake and a toxic gain of function for Curcumin-EVs. In contrast, cholesterol tagging of a hydrophilic mdm2-targeted cyclic peptide saturated at densities of ca 104-105 molecules per vesicle, with lipidomics showing addition to, rather than replacement of endogenous cholesterol. Cholesterol anchored ligands did not change the EVs' size or morphology, and such EVs retained their cell uptake activity without inducing cell toxicity. However, the cholesterol-anchored ligands were rapidly shed from the vesicles in presence of serum. Based on these data, we conclude that (1) both methods allow loading of EVs with small molecules but are prone to unspecific compound binding or redistribution to other components if present in the sample, (2) cholesterol anchoring needs substantial optimization of formulation stability for in vivo applications, whereas (3) careful titration of loading densities is warranted when relying on hydrophobic interactions of EVs with hydrophobic compounds to mitigate changes in physicochemical properties, loss of EV function and potential cell toxicity.


Assuntos
Curcumina , Vesículas Extracelulares , Ligantes , Vesículas Extracelulares/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Colesterol/metabolismo
2.
J Extracell Vesicles ; 10(8): e12094, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34136108

RESUMO

Extracellular vesicles (EVs) derived from the secretome of human mesenchymal stromal cells (MSC) contain numerous factors that are known to exert anti-inflammatory effects. MSC-EVs may serve as promising cell-based therapeutics for the inner ear to attenuate inflammation-based side effects from cochlear implantation which represents an unmet clinical need. In an individual treatment performed on a 'named patient basis', we intraoperatively applied allogeneic umbilical cord-derived MSC-EVs (UC-MSC-EVs) produced according to good manufacturing practice. A 55-year-old patient suffering from Menière's disease was treated with intracochlear delivery of EVs prior to the insertion of a cochlear implant. This first-in-human use of UC-MSC-EVs demonstrates the feasibility of this novel adjuvant therapeutic approach. The safety and efficacy of intracochlear EV-application to attenuate side effects of cochlea implants have to be determined in controlled clinical trials.


Assuntos
Implante Coclear/métodos , Vesículas Extracelulares/transplante , Transplante de Células-Tronco Mesenquimais/métodos , Diferenciação Celular , Implantes Cocleares/efeitos adversos , Citocinas/metabolismo , Orelha Interna/citologia , Vesículas Extracelulares/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/fisiologia , Pessoa de Meia-Idade , Projetos Piloto , Cordão Umbilical/metabolismo
3.
Clin Transl Med ; 10(8): e262, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33377658

RESUMO

The lack of approved anti-inflammatory and neuroprotective therapies in otology has been acknowledged in the last decades and recent approaches are heralding a new era in the field. Extracellular vesicles (EVs) derived from human multipotent (mesenchymal) stromal cells (MSC) can be enriched in vesicular secretome fractions, which have been shown to exert effects (eg, neuroprotection and immunomodulation) of their parental cells. Hence, MSC-derived EVs may serve as novel drug candidates for several inner ear diseases. Here, we provide first evidence of a strong neuroprotective potential of human stromal cell-derived EVs on inner ear physiology. In vitro, MSC-EV preparations exerted immunomodulatory activity on T cells and microglial cells. Moreover, local application of MSC-EVs to the inner ear significantly attenuated hearing loss and protected auditory hair cells from noise-induced trauma in vivo. Thus, EVs derived from the vesicular secretome of human MSC may represent a next-generation biological drug that can exert protective therapeutic effects in a complex and nonregenerating organ like the inner ear.

4.
J Biol Chem ; 293(34): 13151-13165, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29967063

RESUMO

Protein activity is often regulated by altering the oligomerization state. One mechanism of multimerization involves domain swapping, wherein proteins exchange parts of their structures and thereby form long-lived dimers or multimers. Domain swapping has been specifically observed in amyloidogenic proteins, for example the cystatin superfamily of cysteine protease inhibitors. Cystatins are twin-headed inhibitors, simultaneously targeting the lysosomal cathepsins and legumain, with important roles in cancer progression and Alzheimer's disease. Although cystatin E is the most potent legumain inhibitor identified so far, nothing is known about its propensity to oligomerize. In this study, we show that conformational destabilization of cystatin E leads to the formation of a domain-swapped dimer with increased conformational stability. This dimer was active as a legumain inhibitor by forming a trimeric complex. By contrast, the binding sites toward papain-like proteases were buried within the cystatin E dimer. We also showed that the dimers could further convert to amyloid fibrils. Unexpectedly, cystatin E amyloid fibrils contained functional protein, which inhibited both legumain and papain-like enzymes. Fibril formation was further regulated by glycosylation. We speculate that cystatin amyloid fibrils might serve as a binding platform to stabilize the pH-sensitive legumain and cathepsins in the extracellular environment, contributing to their physiological and pathological functions.


Assuntos
Amiloide/química , Cistatina M/química , Cistatina M/metabolismo , Papaína/antagonistas & inibidores , Multimerização Proteica , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Relação Estrutura-Atividade
5.
Anal Chem ; 90(8): 5055-5065, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29582994

RESUMO

Protein function critically depends on structure. However, current analytical tools to monitor consistent higher-order structure with high sensitivity, as for instance required in the development of biopharmaceuticals, are limited. To complement existing assays, we present the analytical cascade of enzymes (ACE), a method based on enzymatic modifications of target proteins, which serve to exponentially amplify structural differences between them. The method enables conformational and chemical fingerprinting of closely related proteins, allowing for the sensitive detection of heterogeneities in protein preparations with high precision. Using this method, we detect protein variants differing in conformation only, as well as structural changes induced by diverse covalent modifications. Additionally, we employ this method to identify the nature of structural variants. Moreover, the ACE method should help to address the limited reproducibility in fundamental research, which partly relates to sample heterogeneities.


Assuntos
Ensaios Enzimáticos/métodos , Proteínas/química , Cromatografia em Gel , Cisteína Endopeptidases/metabolismo , Temperatura Alta , Humanos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Mutagênese , Oxirredução , Proteínas/genética , Proteínas/metabolismo , Rituximab/química , Rituximab/genética , Rituximab/metabolismo , Transglutaminases/metabolismo , Raios Ultravioleta
6.
Biochemistry ; 57(9): 1523-1532, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29412660

RESUMO

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory and tumor-promoting cytokine that occurs in two redox-dependent immunologically distinct conformational isoforms. The disease-related structural isoform of MIF (oxMIF) can be specifically and predominantly detected in the circulation of patients with inflammatory diseases and in tumor tissue, whereas the ubiquitously expressed isoform of MIF (redMIF) is abundantly expressed in healthy and diseased subjects. In this article, we report that cysteine 81 within MIF serves as a "switch cysteine" for the conversion of redMIF to oxMIF. Modulating cysteine 81 by thiol reactive agents leads to significant structural rearrangements of the protein, resulting in a decreased ß-sheet content and an increased random coil content, but maintaining the trimeric quaternary structure. This conformational change in the MIF molecule enables binding of oxMIF-specific antibodies BaxB01 and BaxM159, which showed beneficial activity in animal models of inflammation and cancer. Crystal structure analysis of the MIF-derived EPCALCS peptide, bound in its oxMIF-like conformation by the Fab fragment of BaxB01, revealed that this peptide adopts a curved conformation, making the central thiol protein oxidoreductase motif competent to undergo disulfide shuffling. We conclude that redMIF might reflect a latent zymogenic form of MIF, and formation of oxMIF leads to a physiologically relevant, i.e., enzymatically active, state.


Assuntos
Cisteína/química , Cisteína/metabolismo , Oxirredutases Intramoleculares/química , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/química , Fatores Inibidores da Migração de Macrófagos/metabolismo , Especificidade de Anticorpos , Dicroísmo Circular , Cisteína/imunologia , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Dissulfeto de Glutationa/química , Dissulfeto de Glutationa/metabolismo , Humanos , Oxirredutases Intramoleculares/imunologia , Fatores Inibidores da Migração de Macrófagos/imunologia , Modelos Moleculares , Oxirredução , Conformação Proteica , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...