Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vascul Pharmacol ; 133-134: 106777, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32750408

RESUMO

Atherosclerosis is a systemic chronic inflammatory disease. Many antioxidants including alpha-lipoic acid (LA), a product of lipoic acid synthase (Lias), have proven to be effective for treatment of this disease. However, the question remains whether LA regulates the immune response as a protective mechanism against atherosclerosis. We initially investigated whether enhanced endogenous antioxidant can retard the development of atherosclerosis via immunomodulation. To explore the impact of enhanced endogenous antioxidant on the retardation of atherosclerosis via immune regulation, our laboratory has recently created a double mutant mouse model, using apolipoprotein E-deficient (Apoe-/-) mice crossbred with mice overexpressing lipoic acid synthase gene (LiasH/H), designated as LiasH/HApoe-/- mice. Their littermates, Lias+/+Apoe-/- mice, served as a control. Distinct redox environments between the two strains of mice have been established and they can be used to facilitate identification of antioxidant targets in the immune response. At 6 months of age, LiasH/HApoe-/- mice had profoundly decreased atherosclerotic lesion size in the aortic sinus compared to their Lias+/+Apoe-/- littermates, accompanied by significantly enhanced numbers of regulatory T cells (Tregs) and anti-oxidized LDL autoantibody in the vascular system, and reduced T cell infiltrates in aortic walls. Our results represent a novel exploration into an environment with increased endogenous antioxidant and its ability to alleviate atherosclerosis, likely through regulation of the immune response. These outcomes shed light on a new therapeutic strategy using antioxidants to lessen atherosclerosis.


Assuntos
Aorta/enzimologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Placa Aterosclerótica , Sulfurtransferases/biossíntese , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/enzimologia , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/imunologia , Aterosclerose/patologia , Autoanticorpos/sangue , Modelos Animais de Doenças , Indução Enzimática , Lipoproteínas LDL/imunologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Oxirredução , Estresse Oxidativo , Sulfurtransferases/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
2.
Genes Environ ; 42: 21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32514323

RESUMO

BACKGROUND: Exogenous formaldehyde is classified by the IARC as a Category 1 known human carcinogen. Meanwhile, a significant amount of endogenous formaldehyde is produced in the human body; as such, formaldehyde-derived DNA and protein adducts have been detected in animals and humans in the absence of major exogenous formaldehyde exposure. However, the toxicological effects of endogenous formaldehyde on individuals with normal DNA damage repair functions are not well understood. In this study, we attempted to generate C57BL/6 mice deficient in both Adh5 and Aldh2, which encode two major enzymes that metabolize endogenous formaldehyde, in order to understand the effects of endogenous formaldehyde on mice with normal DNA repair function. RESULTS: Due to deficiencies in both ADH5 and ALDH2, few mice survived past post-natal day 21. In fact, the survival of pups within the first few days after birth was significantly decreased. Remarkably, two Aldh2 -/- /Adh5 -/- mice survived for 25 days after birth, and we measured their total body weight and organ weights. The body weight of Aldh2 -/- /Adh5 -/- mice decreased significantly by almost 37% compared to the Aldh2 -/- /Adh5 +/- and Aldh2 -/- /Adh5 +/+ mice of the same litter. In addition, the absolute weight of each organ was also significantly reduced. CONCLUSION: Mice deficient in both formaldehyde-metabolizing enzymes ADH5 and ALDH2 were found to develop partial synthetic lethality and mortality shortly after birth. This phenotype may be due to the accumulation of endogenous formaldehyde. No serious phenotype has been reported in people with dysfunctional, dominant-negative ALDH2*2 alleles, but it has been reported that they may be highly susceptible to osteoporosis and neurodegenerative diseases. It is important to further investigate these diseases in individuals with ALDH2*2 alleles, including an association with decreased metabolism, and thus accumulation, of formaldehyde.

3.
Sci Rep ; 7(1): 10787, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883613

RESUMO

Endogenous formaldehyde is abundantly present in our bodies, at around 100 µM under normal conditions. While such high steady state levels of formaldehyde may be derived by enzymatic reactions including oxidative demethylation/deamination and myeloperoxidation, it is unclear whether endogenous formaldehyde can initiate and/or promote diseases in humans. Here, we show that fluorescent malondialdehyde-formaldehyde (M2FA)-lysine adducts are immunogenic without adjuvants in mice. Natural antibody titers against M2FA are elevated in atherosclerosis-prone mice. Staining with an antibody against M2FA demonstrated that M2FA is present in plaque found on the aortic valve of ApoE -/- mice. To mimic inflammation during atherogenesis, human myeloperoxidase was incubated with glycine, H2O2, malondialdehyde, and a lysine analog in PBS at a physiological temperature, which resulted in M2FA generation. These results strongly suggest that the 1,4-dihydropyridine-type of lysine adducts observed in atherosclerosis lesions are likely produced by endogenous formaldehyde and malondialdehyde with lysine. These highly fluorescent M2FA adducts may play important roles in human inflammatory and degenerative diseases.


Assuntos
Aterosclerose/imunologia , Aterosclerose/metabolismo , Epitopos/imunologia , Formaldeído/metabolismo , Animais , Apolipoproteínas E/deficiência , Cromatografia Líquida , Formaldeído/química , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Camundongos , Camundongos Knockout , Estrutura Molecular , Peroxidase/metabolismo , Placa Aterosclerótica/imunologia , Placa Aterosclerótica/metabolismo
4.
Int J Clin Exp Med ; 10(1): 1051-1058, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28794819

RESUMO

The cellular environment of the mammalian heart constantly is challenged with environmental and intrinsic pathological insults, which affect the proper folding of proteins in heart failure. The effects of damaged or misfolded proteins on the cell can be profound and result in a process termed "proteotoxicity". While proteotoxicity is best known for its role in mediating the pathogenesis of neurodegenerative diseases such as Alzheimer's disease, its role in human heart failure also has been recognized. The UPR involves three branches, including PERK, ATF6, and IRE1. In the presence of a misfolded protein, the GRP78 molecular chaperone that normally interacts with the receptors PERK, ATF6, and IRE-1 in the endoplasmic reticulum detaches to attempt to stabilize the protein. Mouse models of cardiac hypertrophy, ischemia, and heart failure demonstrate increases in activity of all three branches after removing GRP78 from these internal receptors. Recent studies have linked elevated PERK and CHOP in vitro with regulation of ion channels linked with human systolic heart failure. With this in mind, we specifically investigated ventricular myocardium from 10 patients with a history of conduction system defects or arrhythmias for expression of UPR and autophagy genes compared to myocardium from non-failing controls. We identified elevated Chop, Atf3, and Grp78 mRNA, along with XBP-1-regulated Cebpa mRNA, indicative of activation of the UPR in human heart failure with arrhythmias.

5.
Cancer Res ; 77(9): 2500-2511, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28373182

RESUMO

The association between obesity and breast cancer risk and prognosis is well established in estrogen receptor (ER)-positive disease but less clear in HER2-positive disease. Here, we report preclinical evidence suggesting weight maintenance through calorie restriction (CR) may limit risk of HER2-positive breast cancer. In female MMTV-HER2/neu transgenic mice, we found that ERα and ERß expression, mammary tumorigenesis, and survival are energy balance dependent in association with epigenetic reprogramming. Mice were randomized to receive a CR, overweight-inducing, or diet-induced obesity regimen (n = 27/group). Subsets of mice (n = 4/group/time point) were euthanized after 1, 3, and 5 months to characterize diet-dependent metabolic, transcriptional, and epigenetic perturbations. Remaining mice were followed up to 22 months. Relative to the overweight and diet-induced obesity regimens, CR decreased body weight, adiposity, and serum metabolic hormones as expected and also elicited an increase in mammary ERα and ERß expression. Increased DNA methylation accompanied this pattern, particularly at CpG dinucleotides located within binding or flanking regions for the transcriptional regulator CCCTC-binding factor of ESR1 and ESR2, consistent with sustained transcriptional activation of ERα and ERß. Mammary expression of the DNA methylation enzyme DNMT1 was stable in CR mice but increased over time in overweight and diet-induced obesity mice, suggesting CR obviates epigenetic alterations concurrent with chronic excess energy intake. In the survival study, CR elicited a significant suppression in spontaneous mammary tumorigenesis. Overall, our findings suggest a mechanistic rationale to prevent or reverse excess body weight as a strategy to reduce HER2-positive breast cancer risk. Cancer Res; 77(9); 2500-11. ©2017 AACR.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Neoplasias Mamárias Animais/genética , Obesidade/genética , Animais , Neoplasias da Mama/fisiopatologia , Restrição Calórica , Carcinogênese/genética , Metilação de DNA/genética , Metabolismo Energético/genética , Epigênese Genética/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Mamárias Animais/etiologia , Neoplasias Mamárias Animais/fisiopatologia , Camundongos , Camundongos Transgênicos , Obesidade/complicações , Obesidade/fisiopatologia , Receptor ErbB-2/genética , Fatores de Risco
6.
PLoS One ; 12(2): e0172172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28222187

RESUMO

Atherosclerosis is widely accepted to be a chronic inflammatory disease, and the immunological response to the accumulation of LDL is believed to play a critical role in the development of this disease. 1,4-Dihydropyridine-type MAA-adducted LDL has been implicated in atherosclerosis. Here, we have demonstrated that pure MAA-modified residues can be chemically conjugated to large proteins without by-product contamination. Using this pure antigen, we established a purified MAA-ELISA, with which a marked increase in anti-MAA antibody titer was determined at a very early stage of atherosclerosis in 3-month ApoE-/- mice fed with a normal diet. Our methods of Nε-MAA-L-lysine purification and purified antigen-based ELISA will be easily applicable for biomarker-based detection of early stage atherosclerosis in patients, as well as for the development of an adduct-specific Liquid Chromatography/Mass Spectrometry-based quantification of physiological and pathological levels of MAA.


Assuntos
Acetaldeído/imunologia , Autoanticorpos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Malondialdeído/imunologia , Animais , Autoanticorpos/sangue , Feminino , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Sensibilidade e Especificidade
7.
J Mol Cell Cardiol ; 105: 99-109, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28232072

RESUMO

RATIONALE: The contractile dysfunction that underlies heart failure involves perturbations in multiple biological processes ranging from metabolism to electrophysiology. Yet the epigenetic mechanisms that are altered in this disease state have not been elucidated. SWI/SNF chromatin-remodeling complexes are plausible candidates based on mouse knockout studies demonstrating a combined requirement for the BRG1 and BRM catalytic subunits in adult cardiomyocytes. Brg1/Brm double mutants exhibit metabolic and mitochondrial defects and are not viable although their cause of death has not been ascertained. OBJECTIVE: To determine the cause of death of Brg1/Brm double-mutant mice, to test the hypothesis that BRG1 and BRM are required for cardiac contractility, and to identify relevant downstream target genes. METHODS AND RESULTS: A tamoxifen-inducible gene-targeting strategy utilizing αMHC-Cre-ERT was implemented to delete both SWI/SNF catalytic subunits in adult cardiomyocytes. Brg1/Brm double-mutant mice were monitored by echocardiography and electrocardiography, and they underwent rapidly progressive ventricular dysfunction including conduction defects and arrhythmias that culminated in heart failure and death within 3weeks. Mechanistically, BRG1/BRM repressed c-Myc expression, and enforced expression of a DOX-inducible c-MYC trangene in mouse cardiomyocytes phenocopied the ventricular conduction defects observed in Brg1/Brm double mutants. BRG1/BRM and c-MYC had opposite effects on the expression of cardiac conduction genes, and the directionality was consistent with their respective loss- and gain-of-function phenotypes. To support the clinical relevance of this mechanism, BRG1/BRM occupancy was diminished at the same target genes in human heart failure cases compared to controls, and this correlated with increased c-MYC expression and decreased CX43 and SCN5A expression. CONCLUSION: BRG1/BRM and c-MYC have an antagonistic relationship regulating the expression of cardiac conduction genes that maintain contractility, which is reminiscent of their antagonistic roles as a tumor suppressor and oncogene in cancer.


Assuntos
DNA Helicases/metabolismo , Sistema de Condução Cardíaco , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição/metabolismo , Animais , DNA Helicases/genética , Eletrocardiografia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Contração Miocárdica/genética , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/genética , Fatores de Transcrição/genética
8.
Cardiovasc Pathol ; 25(3): 258-269, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27039070

RESUMO

There has been an increasing recognition that mitochondrial perturbations play a central role in human heart failure. Mitochondrial networks, whose function is to maintain the regulation of mitochondrial biogenesis, autophagy ('mitophagy') and mitochondrial fusion/fission, are new potential therapeutic targets. Yet our understanding of the molecular underpinning of these processes is just emerging. We recently identified a role of the SWI/SNF ATP-dependent chromatin remodeling complexes in the metabolic homeostasis of the adult cardiomyocyte using cardiomyocyte-specific and inducible deletion of the SWI/SNF ATPases BRG1 and BRM in adult mice (Brg1/Brm double mutant mice). To build upon these observations in early altered metabolism, the present study looks at the subsequent alterations in mitochondrial quality control mechanisms in the impaired adult cardiomyocyte. We identified that Brg1/Brm double-mutant mice exhibited increased mitochondrial biogenesis, increases in 'mitophagy', and alterations in mitochondrial fission and fusion that led to small, fragmented mitochondria. Mechanistically, increases in the autophagy and mitophagy-regulated proteins Beclin1 and Bnip3 were identified, paralleling changes seen in human heart failure. Evidence for perturbed cardiac mitochondrial dynamics included decreased mitochondria size, reduced numbers of mitochondria, and an altered expression of genes regulating fusion (Mfn1, Opa1) and fission (Drp1). We also identified cardiac protein amyloid accumulation (aggregated fibrils) during disease progression along with an increase in pre-amyloid oligomers and an upregulated unfolded protein response including increased GRP78, CHOP, and IRE-1 signaling. Together, these findings described a role for BRG1 and BRM in mitochondrial quality control, by regulating mitochondrial number, mitophagy, and mitochondrial dynamics not previously recognized in the adult cardiomyocyte. As critical to the pathogenesis of heart failure, epigenetic mechanisms like SWI/SNF chromatin remodeling seem more intimately linked to cardiac function and mitochondrial quality control mechanisms than previously realized.


Assuntos
DNA Helicases/metabolismo , Insuficiência Cardíaca/metabolismo , Dinâmica Mitocondrial/fisiologia , Mitofagia/fisiologia , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Animais , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Insuficiência Cardíaca/patologia , Homeostase/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Mutantes , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miócitos Cardíacos/patologia
9.
Metabolomics ; 11(5): 1287-1301, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26392817

RESUMO

Mammalian SWI/SNF chromatin-remodeling complexes utilize either BRG1 or Brm as alternative catalytic subunits to alter the position of nucleosomes and regulate gene expression. Genetic studies have demonstrated that SWI/SNF complexes are required during cardiac development and also protect against cardiovascular disease and cancer. However, Brm constitutive null mutants do not exhibit a cardiomyocyte phenotype and inducible Brg1 conditional mutations in cardiomyocyte do not demonstrate differences until stressed with transverse aortic constriction, where they exhibit a reduction in cardiac hypertrophy. We recently demonstrated the overlapping functions of Brm and Brg1 in vascular endothelial cells and sought here to test if this overlapping function occurred in cardiomyocytes. Brg1/Brm double mutants died within 21 days of severe cardiac dysfunction associated with glycogen accumulation and mitochondrial defects based on histological and ultrastructural analyses. To determine the underlying defects, we performed nontargeted metabolomics analysis of cardiac tissue by GC/MS from a line of Brg1/Brm double-mutant mice, which lack both Brg1 and Brm in cardiomyocytes in an inducible manner, and two groups of controls. Metabolites contributing most significantly to the differences between Brg1/Brm double-mutant and control-group hearts were then determined using the variable importance in projection analysis. Increased cardiac linoleic acid and oleic acid suggest alterations in fatty acid utilization or intake are perturbed in Brg1/Brm double mutants. Conversely, decreased glucose-6-phosphate, fructose-6-phosphate, and myoinositol suggest that glycolysis and glycogen formation are impaired. These novel metabolomics findings provide insight into SWI/SNF-regulated metabolic pathways and will guide mechanistic studies evaluating the role of SWI/SNF complexes in homeostasis and cardiovascular disease prevention.

10.
Oncotarget ; 6(2): 732-45, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25544751

RESUMO

SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited. To investigate the role of SWI/SNF complexes in the DNA-damage response (DDR), we used shRNAs to deplete BRG1 and BRM and then exposed these cells to a panel of 6 genotoxic agents. Compared to controls, the shRNA knockdown cells were hypersensitive to certain genotoxic agents that cause double-strand breaks (DSBs) associated with stalled/collapsed replication forks but not to ionizing radiation-induced DSBs that arise independently of DNA replication. These findings were supported by our analysis of DDR kinases, which demonstrated a more prominent role for SWI/SNF in the activation of the ATR-Chk1 pathway than the ATM-Chk2 pathway. Surprisingly, γH2AX induction was attenuated in shRNA knockdown cells exposed to a topoisomerase II inhibitor (etoposide) but not to other genotoxic agents including IR. However, this finding is compatible with recent studies linking SWI/SNF with TOP2A and TOP2BP1. Depletion of BRG1 and BRM did not result in genomic instability in a tumor-derived cell line but did result in nucleoplasmic bridges in normal human fibroblasts. Taken together, these results suggest that SWI/SNF tumor-suppressor activity involves a role in the DDR to attenuate replicative stress and genomic instability. These results may also help to inform the selection of chemotherapeutics for tumors deficient for SWI/SNF function.


Assuntos
Dano ao DNA , DNA Helicases/genética , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Neoplasias do Colo do Útero/genética , Linhagem Celular Tumoral , Sobrevivência Celular/genética , DNA Helicases/deficiência , Feminino , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Proteínas Nucleares/deficiência , RNA Interferente Pequeno/genética , Fatores de Transcrição/deficiência
11.
Cancer Discov ; 4(12): 1387-97, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266735

RESUMO

UNLABELLED: Whether dietary fiber protects against colorectal cancer is controversial because of conflicting results from human epidemiologic studies. However, these studies and mouse models of colorectal cancer have not controlled the composition of gut microbiota, which ferment fiber into short-chain fatty acids such as butyrate. Butyrate is noteworthy because it has energetic and epigenetic functions in colonocytes and tumor-suppressive properties in colorectal cancer cell lines. We used gnotobiotic mouse models colonized with wild-type or mutant strains of a butyrate-producing bacterium to demonstrate that fiber does have a potent tumor-suppressive effect but in a microbiota- and butyrate-dependent manner. Furthermore, due to the Warburg effect, butyrate was metabolized less in tumors where it accumulated and functioned as a histone deacetylase (HDAC) inhibitor to stimulate histone acetylation and affect apoptosis and cell proliferation. To support the relevance of this mechanism in human cancer, we demonstrate that butyrate and histone-acetylation levels are elevated in colorectal adenocarcinomas compared with normal colonic tissues. SIGNIFICANCE: These results, which link diet and microbiota to a tumor-suppressive metabolite, provide insight into conflicting epidemiologic findings and suggest that probiotic/prebiotic strategies can modulate an endogenous HDAC inhibitor for anticancer chemoprevention without the adverse effects associated with synthetic HDAC inhibitors used in chemotherapy.


Assuntos
Butiratos/metabolismo , Transformação Celular Neoplásica , Neoplasias Colorretais/etiologia , Fibras na Dieta , Vida Livre de Germes , Microbiota , Animais , Carcinógenos/administração & dosagem , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/patologia , Camundongos , Gradação de Tumores
12.
J Cell Physiol ; 229(1): 44-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23757284

RESUMO

Widespread changes in gene expression underlie B cell development and activation, yet our knowledge of which chromatin-remodeling factors are essential is limited. Here, we demonstrate that the BRG1 catalytic subunit of SWI/SNF complexes was dispensable for murine B cell development but played an important, albeit selective, role during activation. Although BRG1 was dispensable for CD69 induction and differentiation into plasma cells based on the ability of mutant B cells to undergo hypertrophy and secrete IgM antibodies, it was required for robust cell proliferation in response to activation. Accordingly, BRG1 was required for only ∼100 genes to be expressed at normal levels in naïve B cells but >1,000 genes during their activation. BRG1 upregulated fivefold more genes than it downregulated, and the toll-like receptor pathway and JAK/STAT cytokine-signaling pathways were particularly dependent on BRG1. The importance of BRG1 in B cell activation was underscored by the occurrence of opportunistic Pasteurella infections in conditionally mutant mice. B cell activation has long served as a model of inducible gene expression, and the results presented here identify BRG1 as a chromatin-remodeling factor that upregulates the transcriptome of B cells during their activation to promote rapid cell proliferation and to mount an effective immune response.


Assuntos
Linfócitos B/metabolismo , Montagem e Desmontagem da Cromatina/genética , DNA Helicases , Ativação Linfocitária/genética , Proteínas Nucleares , Fatores de Transcrição , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/fisiologia , Diferenciação Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
13.
Circ Res ; 111(5): e111-22, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22740088

RESUMO

RATIONALE: Mating type switching/sucrose non-fermenting (SWI/SNF) chromatin-remodeling complexes utilize either BRG1 or BRM as a catalytic subunit to alter nucleosome position and regulate gene expression. BRG1 is required for vascular endothelial cell (VEC) development and embryonic survival, whereas BRM is dispensable. OBJECTIVE: To circumvent embryonic lethality and study Brg1 function in adult tissues, we used conditional gene targeting. To evaluate possible Brg1-Brm redundancy, we analyzed Brg1 mutant mice on wild-type and Brm-deficient backgrounds. METHODS AND RESULTS: The inducible Mx1-Cre driver was used to mutate Brg1 in adult mice. These conditional-null mutants exhibited a tissue-specific phenotype and unanticipated functional compensation between Brg1 and Brm. Brg1 single mutants were healthy and had a normal lifespan, whereas Brg1/Brm double mutants exhibited cardiovascular defects and died within 1 month. BRG1 and BRM were required for the viability of VECs but not other cell types where both genes were also knocked out. The VEC phenotype was most evident in the heart, particularly in the microvasculature of the outer myocardium, and was recapitulated in primary cells ex vivo. VEC death resulted in vascular leakage, cardiac hemorrhage, secondary death of cardiomyocytes due to ischemia, and ventricular dissections. CONCLUSIONS: BRG1-catalyzed SWI/SNF complexes are particularly important in cardiovascular tissues. However, in contrast to embryonic development, in which Brm does not compensate, Brg1 is required in adult VECs only when Brm is also mutated. These results demonstrate for the first time that Brm functionally compensates for Brg1 in vivo and that there are significant changes in the relative importance of BRG1- and BRM-catalyzed SWI/SNF complexes during the development of an essential cell lineage.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Células Endoteliais/metabolismo , Cardiopatias Congênitas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Fatores Etários , Animais , Catálise , Morte Celular/fisiologia , Linhagem da Célula/fisiologia , Sobrevivência Celular/fisiologia , Proteínas Cromossômicas não Histona/genética , Vasos Coronários/embriologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , DNA Helicases/genética , Ecocardiografia , Células Endoteliais/patologia , Coração/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Homeostase/fisiologia , Camundongos , Camundongos Transgênicos , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Proteínas Nucleares/genética , Derrame Pleural/genética , Derrame Pleural/metabolismo , Derrame Pleural/patologia , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...