Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(3): 033202, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35119894

RESUMO

We report the first operation of a Ra^{+} optical clock, a promising high-performance clock candidate. The clock uses a single trapped ^{226}Ra^{+} ion and operates on the 7s ^{2}S_{1/2}→6d ^{2}D_{5/2} electric quadrupole transition. By self-referencing three pairs of symmetric Zeeman transitions, we demonstrate a frequency instability of 1.1×10^{-13}/sqrt[τ], where τ is the averaging time in seconds. The total systematic uncertainty is evaluated to be Δν/ν=9×10^{-16}. Using the clock, we realize the first measurement of the ratio of the D_{5/2} state to the S_{1/2} state Landé g-factors: g_{D}/g_{S}=0.598 805 3(11). A Ra^{+} optical clock could improve limits on the time variation of the fine structure constant, α[over ˙]/α, in an optical frequency comparison. The ion also has several features that make it a suitable system for a transportable optical clock.

2.
Phys Rev Lett ; 126(2): 023002, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512224

RESUMO

We present an all-optical mass spectrometry technique to identify trapped ions. The new method uses laser-cooled ions to determine the mass of a cotrapped dark ion with a sub-dalton resolution within a few seconds. We apply the method to identify the first controlled synthesis of cold, trapped RaOH^{+} and RaOCH_{3}^{+}. These molecules are promising for their sensitivity to time and parity violations that could constrain sources of new physics beyond the standard model. The nondestructive nature of the mass spectrometry technique may help identify molecular ions or highly charged ions prior to optical spectroscopy. Unlike previous mass spectrometry techniques for small ion crystals that rely on scanning, the method uses a Fourier transform that is inherently broadband and comparatively fast. The technique's speed provides new opportunities for studying state-resolved chemical reactions in ion traps.

3.
Phys Rev Lett ; 122(22): 223001, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31283282

RESUMO

The unstable radium nucleus is appealing for probing new physics due to its high mass, octupole deformation, and energy level structure. Ion traps, with long hold times and low particle numbers, are excellent for work with radioactive species, such as radium and radium-based molecular ions, where low activity, and hence low total numbers, is desirable. We address the challenges associated with the lack of stable isotopes in a tabletop experiment with a low-activity (∼10 µCi) source where we laser-cool trapped radium ions. With a laser-cooled radium ion we measured the 7p^{2}P_{1/2}^{o} state's branching fractions to the ground state, 7s^{2}S_{1/2}, and a metastable excited state, 6d^{2}D_{3/2}, to be p=0.9104(7) and 0.0896(7), respectively. With a nearby tellurium reference line we measured the 7s^{2}S_{1/2}→7p^{2}P_{1/2}^{o} transition frequency, 640.096 63(6) THz.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA