Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 13(4)2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32093276

RESUMO

Whilst the highest power conversion efficiency (PCE) perovskite solar cell (PSC) devices that have reported to date have been fabricated by high temperature sintering (>500 °C) of mesoporous metal oxide scaffolds, lower temperature processing is desirable for increasing the range of substrates available and also decrease the energy requirements during device manufacture. In this work, titanium dioxide (TiO2) mesoporous scaffolds have been compared with metal oxide oxidation catalysts: cerium dioxide (CeO2) and manganese dioxide (MnO2). For MnO2, to the best of our knowledge, this is the first time a low energy band gap metal oxide has been used as a scaffold in the PSC devices. Thermal gravimetric analysis (TGA) shows that organic binder removal is completed at temperatures of 350 °C and 275 °C for CeO2 and MnO2, respectively. By comparison, the binder removal from TiO2 pastes requires temperatures >500 °C. CH3NH3PbBr3 PSC devices that were fabricated while using MnO2 pastes sintered at 550 °C show slightly improved PCE (η = 3.9%) versus mesoporous TiO2 devices (η = 3.8%) as a result of increased open circuit voltage (Voc). However, the resultant PSC devices showed no efficiency despite apparently complete binder removal during lower temperature (325 °C) sintering using CeO2 or MnO2 pastes.

2.
Chem Commun (Camb) ; 55(1): 35-38, 2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452027

RESUMO

Co-sensitisation of methylammonium lead tri-bromide perovskite solar cells with red (D205) and blue (SQ2) organic dyes improves device efficiencies and allows device colour tuning. Sensitising the film after perovskite crystallisation produces higher device efficiencies (2.6% SQ2, 3.1% D205) than perovskite-only devices (2%) and devices sensitised before the perovskite layer deposition (1.5% SQ2, 2.0% D205).

3.
Sci Technol Adv Mater ; 19(1): 599-612, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30181788

RESUMO

Dye-sensitized solar cells (DSCs) have been the subject of wide-ranging studies for many years because of their potential for large-scale manufacturing using roll-to-roll processing allied to their use of earth abundant raw materials. Two main challenges exist for DSC devices to achieve this goal; uplifting device efficiency from the 12 to 14% currently achieved for laboratory-scale 'hero' cells and replacement of the widely-used liquid electrolytes which can limit device lifetimes. To increase device efficiency requires optimized dye injection and regeneration, most likely from multiple dyes while replacement of liquid electrolytes requires solid charge transporters (most likely hole transport materials - HTMs). While theoretical and experimental work have both been widely applied to different aspects of DSC research, these approaches are most effective when working in tandem. In this context, this perspective paper considers the key parameters which influence electron transfer processes in DSC devices using one or more dye molecules and how modelling and experimental approaches can work together to optimize electron injection and dye regeneration.

4.
Chem Commun (Camb) ; 52(23): 4301-4, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26962574

RESUMO

We report a solvent-free approach to synthesizing organolead perovskites by using solid state reactions to coat perovskite crystals onto Al2O3 or TiO2 nanoparticles followed by addition of terpineol affording perovskite inks. We have bar cast these inks to produce photoactive perovskite thin films which are significantly more stable to humidity than solution-processed films. This new method also avoids the use of toxic DMF solvent.


Assuntos
Compostos de Cálcio/química , Dimetilformamida/química , Chumbo/química , Óxidos/química , Titânio/química
5.
Water Environ Res ; 88(2): 107-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26803099

RESUMO

Drained peatland catchments are reported to produce more colored, dissolved organic carbon (DOC)-rich water, presenting problems for potable water treatment. The blocking of peatland drainage ditches to restore the water table is increasingly being considered as a strategy to address this deterioration in water quality. However, the effect of ditch blocking on the potential of DOC to form trihalomethanes (THMs) has not been assessed. In this study, the effect of peat rewetting on pore water DOC concentration and characteristics (including THM formation potential [THMFP]) was assessed over 12 months using peat cores collected from two drained peatland sites. The data show little evidence of differences in DOC concentration or characteristics between the different treatments. The absence of any difference in the THMFP of pore water between treatments suggests that, in the short term at least, ditch blocking may not have an effect on the THMFP of waters draining peatland catchments.


Assuntos
Cloro/química , Água Subterrânea/química , Trialometanos/síntese química , Áreas Alagadas , Dióxido de Carbono/análise , Enzimas/análise
6.
Sci Total Environ ; 537: 203-12, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282754

RESUMO

Rising dissolved organic carbon (DOC) concentrations in many upland UK catchments represents a challenge for drinking water companies, in particular due to the role of DOC as a precursor in the formation of trihalomethanes (THMs). Whereas traditionally, the response of drinking water companies has been focussed on treatment processes, increasingly, efforts have been made to better understanding the role of land use and catchment processes in affecting drinking water quality. In this study, water quality, including DOC and THM formation potential (THMFP) was assessed between the water source and finished drinking water at an upland and a lowland catchment. Surprisingly, the lowland catchment showed much higher reservoir DOC concentrations apparently due to the influence of a fen within the catchment from where a major reservoir inflow stream originated. Seasonal variations in water quality were observed, driving changes in THMFP. However, the reservoirs in both catchments appeared to dampen these temporal fluctuations. Treatment process applied in the 2 catchments were adapted to reservoir water quality with much higher DOC and THMFP removal rates observed at the lowland water treatment works where coagulation-flocculation was applied. However, selectivity during this DOC removal stage also appeared to increase the proportion of brominated THMs produced.


Assuntos
Água Potável/química , Monitoramento Ambiental/métodos , Trialometanos/análise , Purificação da Água
7.
J Colloid Interface Sci ; 442: 110-9, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25525978

RESUMO

This paper describes a facile method of self-assembling different metal oxide nanoparticles into nanostructured materials via di-carboxylate linkers (oxalic acid) using TiO2 as an example. In this method, the di-carboxylate linkers react with surface hydroxyls on metal oxide nanoparticles forming covalent, ester-like bonds, which enable the binding of two metal oxide particles, one at either end of the linker and facilitates efficient self-assembly of one group of metal oxide nanoparticles homogeneously distributed onto the surface of another group. The oxalate linkers can then be removed by thermal decomposition. This approach is shown to be effective using differently-sized TiO2 nanoparticles, namely in-house synthesized 3-5nm anatase nanocrystals and Degussa P25 titania particles (mean 21nm particle size). Our data show that the application of a high temperature heat treatment (450°C for 30min), conventionally applied to achieve a stable porous structure by thermal decomposition of the linker molecules and by inducing inter-particle necking, damages the surface area of the nanostructured material. However, here we show that sintering at 300°C for 30min or by flash near infrared radiation sintering for 12s efficiently decomposes the oxalate linkers and stabilizes the nanostructure of the material whilst maintaining its high surface area.

8.
Chem Commun (Camb) ; 50(83): 12512-4, 2014 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-25189646

RESUMO

We describe the fastest dyeing of TiO2 photo-electrodes for dye-sensitized solar cells reported to date (<2 min) at room temperature giving η = 7.5% for an N719-SQ1-CDCA mixture which is significantly higher than devices dyed for >12 h using the same dye mixture (η = 5.5%). Time-lapse photography has been used to monitor the ultra-fast co-sensitization. The data show significantly different dye uptake between passive and pump dyeing reflecting competitive sorption between a Ru complex (N719) and an organic dye (SQ1).

9.
Sci Total Environ ; 468-469: 228-39, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24035843

RESUMO

The removal of dissolved organic carbon (DOC) during potable water treatment is important for maintaining aesthetic water quality standards, minimising concentrations of micro-pollutants, controlling bacterial regrowth within distribution systems and, crucially, because it contains a sub-component that can act as trihalomethane (THM) precursors. In this study, the concentration and characteristics of raw water DOC and THM formation potential (THMFP) entering an upland potable water treatment works were analysed over twelve months. Correlations between raw water DOC characteristics, standardised THMFP (STHMFP) and % DOC removal were also investigated. DOC and THM precursor removal during a series of treatment stages was examined over this period, as well as potential selectivity in the removal of DOC fractions, to assess the importance of different treatment stages for DOC removal and THM amelioration. Though THMFP removal remained high and fairly stable throughout the study period (83-89%), the data suggest that this was mostly the result of high DOC removal rates rather than the selective removal of THM precursors. Whilst this chemical agnosticism makes DOC removal more robust, it may make the overall process more vulnerable to exceeding permissible THM concentrations under changing climatic conditions. The kinetics of the reaction between DOC and chlorine appeared to vary seasonally, indicating temporal changes in the proportions of fast- and slow-reacting precursors with implications for THM concentrations at the point of delivery to the consumer. The initial treatment stages, comprising coagulation-flocculation and dissolved air floatation (DAF) were by far the most important in terms of bulk DOC removal and the preferential removal of THM precursors, though, surprisingly, DOC quality was also modified following chlorination and secondary rapid gravity filtration (RGF). Though net THM concentration decreased following initial treatment stages, a doubling in the proportion of brominated THMs (BrTHMs), which are reported to be more carcinogenic, was also observed.


Assuntos
Carbono/isolamento & purificação , Trialometanos/isolamento & purificação , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Análise de Variância , Fracionamento Químico , Cromatografia em Gel , Floculação , Cinética , Estações do Ano , Trialometanos/química , Reino Unido
10.
Bioresour Technol ; 102(5): 4083-90, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21227685

RESUMO

In this study two approaches to predict the total alkalinity (expressed as mg L(-1)HCO(3)(-)) of an anaerobic digester are examined: firstly, software sensors based on multiple linear regression algorithms using data from pH, redox potential and electrical conductivity and secondly, near infrared reflectance spectroscopy (NIRS). Of the software sensors, the model using data from all three probes but a smaller dataset using total alkalinity values below 6000 mg L(-1)HCO(3)(-) produced the best calibration model (R(2)=0.76 and root mean square error of prediction (RMSEP) of 969 mg L(-1)HCO(3)(-)). When validated with new data, the NIRS method produced the best model (R(2)=0.87 RMSEP=1230 mg L(-1)HCO(3)(-)). The NIRS sensor correlated better with new data (R(2)=0.54). In conclusion, this study has developed new and improved algorithms for monitoring total alkalinity within anaerobic digestion systems which will facilitate real-time optimisation of methane production.


Assuntos
Algoritmos , Bactérias Anaeróbias/metabolismo , Metano/biossíntese , Eliminação de Resíduos/métodos , Software , Espectrofotometria Infravermelho/métodos , Bicarbonatos/análise , Concentração de Íons de Hidrogênio , Modelos Lineares , Modelos Teóricos
11.
Chem Commun (Camb) ; 46(38): 7256-8, 2010 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-20820544

RESUMO

We present a rapid (5 min) and controlled sensitisation method for dye sensitized solar cells which gives 6.0% for the Ru dye N719 and 3.7% for the IR absorbing squaraine SQ1. Rapid co-sensitization (N719 and SQ1) gives efficiencies up to 7.9%. Devices have similar or better efficiency to those dyed passively for 18 h.

12.
Bioresour Technol ; 99(17): 7928-40, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18406612

RESUMO

It is in the interest of operators of anaerobic digestion plants to maximise methane production whilst concomitantly reducing the chemical oxygen demand of the digested material. Although the production of biogas through anaerobic digestion is not a new idea, commercial anaerobic digestion processes are often operated at well below their optimal performance due to a variety of factors. This paper reviews current optimisation techniques associated with anaerobic digestion and suggests possible areas where improvements could be made, including the basic design considerations of a single or multi-stage reactor configuration, the type, power and duration of the mixing regime and the retention of active microbial biomass within the reactor. Optimisation of environmental conditions within the digester such as temperature, pH, buffering capacity and fatty acid concentrations is also discussed. The methane-producing potential of various agriculturally sourced feedstocks has been examined, as has the advantages of co-digestion to improve carbon-to-nitrogen ratios and the use of pre-treatments and additives to improve hydrolysis rates or supplement essential nutrients which may be limiting. However, perhaps the greatest shortfall in biogas production is the lack of reliable sensory equipment to monitor key parameters and suitable, parallelised control systems to ensure that the process continually operates at optimal performance. Modern techniques such as software sensors and powerful, flexible controllers are capable of solving these problems. A direct comparison can be made here with, for instance, oil refineries where a more mature technology uses continuous in situ monitoring and associated feedback procedures to routinely deliver continuous, optimal performance.


Assuntos
Agricultura/métodos , Anaerobiose , Biomassa , Reatores Biológicos , Concentração de Íons de Hidrogênio , Temperatura
13.
Sci Total Environ ; 366(2-3): 826-36, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16171848

RESUMO

To quantify the impact of organophosphate pesticides on aquatic ecosystems requires a mechanistic understanding of their behaviour in a range of environmental matrices. The objective of this study was to compare the sorption/desorption, biodegradation and toxic effects of the Pestanal grade and commercial formulation (Ectomort Centenary) of the organophosphate insecticide propetamphos in river and estuarine sediments. For both formulations, the sorption of propetamphos onto sediment was initially very rapid followed by a slower sorption phase. Similarly, the initial rate of desorption was rapid, followed by a much slower rate. In both sorption and desorption experiments, the level of sorbed propetamphos was considerably higher for the commercial formulation of propetamphos (Kd=7-11) than for the Pestanal grade (Kd=4-10). The rate of propetamphos biodegradation was sediment dependent but was most rapid where microbial activity and nutrients were the highest and sorption was the lowest. Propetamphos was more rapidly degraded in sediments under aerobic (t(1/2)=15 d) compared to anaerobic conditions (t(1/2)=19 d). However, no significant difference in the biodegradation rates of the Pestanal grade and commercial formulations of propetamphos were observed. The toxic effect of propetamphos on sediment microbial communities was significantly greater for the commercial formulation than for the Pestanal grade of propetamphos based on EC50 (21 versus 236 microg g(-1)) and EC10 values (0.3 versus 54 microg g(-1)). In conclusion, our results highlight the importance of using commercial pesticide formulations when carrying out ecotoxicological testing.


Assuntos
Compostos Organotiofosforados/análise , Compostos Organotiofosforados/toxicidade , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Adsorção , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biodegradação Ambiental , Sedimentos Geológicos/microbiologia , Inseticidas/análise , Inseticidas/metabolismo , Inseticidas/toxicidade , Compostos Organotiofosforados/metabolismo , Rios , Água do Mar , Poluentes Químicos da Água/metabolismo
14.
Sci Total Environ ; 336(1-3): 13-24, 2005 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-15589246

RESUMO

Cross-linked polyacrylamide gels are increasingly being used in environmental restoration schemes and horticulture as a means of enhancing water supply to plants. However, the environmental impact of cross-linked polyacrylamide gel deployment in soil remains poorly understood. This study assessed the chemical, physical and biological properties of new and field-conditioned cross-linked polyacrylamide gels. Both monomeric acrylamide (11 microg l(-1)) and acrylic acid (285 microg l(-1)) were observed in new gel; however, the levels of monomers in field-conditioned gels (1-6 years old) were very low (acrylamide <1 microg l(-1); acrylic acid <7 microg l(-1)). Generally, freeze-thaw processes and exposure to UV radiation had little effect on gel acrylic acid and acrylamide concentrations. However, elevated temperatures (35 degrees C) caused a significant release of up to 144 mug l(-1) of acrylamide and 453 microg l(-1) of acrylic acid in new gel and up to 25 microg l(-1) of acrylamide and 157 microg l(-1) of acrylic acid in field-conditioned gels. In contrast, gel water holding capacity was highly dependent upon environmental conditions (UV exposure and freeze/thaw cycles produced the greatest loss of water holding in new gels) and gel age. Optical microscopy revealed that after placement in the field the gels became increasingly colonised over time by fungi and bacteria. In enrichment cultures, we were unable, however, to demonstrate microbial growth when cross-linked polyacrylamide was used as the sole nitrogen source. In summary, under a range of conditions cross-linked polyacrylamide did not release acrylamide above legally permitted limits, with the exception of gel subjected to elevated temperatures. However, their capacity for holding water decreased sharply within 18 months. We therefore conclude that cross-linked polyacrylamide placed in soil is relatively stable with respect to the production of potentially toxic acrylamide, a species with a short half-life, which degrades to the much less toxic acrylic acid. However, the loss of water holding capacity raises questions about its long-term effectiveness in land restoration schemes as this is the main reason it is used in this role.


Assuntos
Resinas Acrílicas/química , Resinas Acrílicas/metabolismo , Modelos Teóricos , Poluentes do Solo/isolamento & purificação , Biodegradação Ambiental , Meia-Vida , Teste de Materiais , Mineração , Desenvolvimento Vegetal , Temperatura , Raios Ultravioleta , Água/análise
15.
Ecotoxicology ; 13(1-2): 29-42, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14992469

RESUMO

The fate of the fungicide carbendazim (applied in the formulation Derosal) in soil was determined in Terrestrial Model Ecosystem (TME) tests and corresponding field-validation studies, which were performed in four different countries (United Kingdom, Germany, Portugal, and The Netherlands). The tests used different soil types, and lasted for 16 weeks. On three of the four sites, grassland soils were used while the fourth site had an arable soil. TMEs consisted of intact soil columns (diameter 17.5 cm; length 40 cm) and were taken from the site where the field study was performed. In the first series of TME tests, carbendazim was applied at four dosages ranging between 0.36 and 77.8 kg a.i./ha, while in the second series of TME tests and the field-validation studies six dosages between 0.36 and 87.5 kg a.i./ha were applied. DT50 values for the dissipation of carbendazim in the TME and field tests were in most cases not significantly affected by the dosage used and ranged between 3.1 and 13.9 weeks in the top 15 cm soil layers. Corresponding DT90 values ranged between 10.1 and 46.1 weeks. DT50 and DT90 values tended to be higher in the more acidic soils of Amsterdam and Flörsheim (pH-KCl 4.8-5.1 and 5.3-5.9, respectively) than in the less acidic soils of Bangor and Coimbra (pH-KCl 5.8-6.6 and 6.4-7.1, respectively). Fate of carbendazim in soil showed similar patterns in the two TME tests and the corresponding field-validation study performed at each site. The only exception was Flörsheim, where the compound was significantly more persistent in the field probably due to different climatic conditions. Carbendazim was not recovered from leachates produced in the TME tests, nor was the compound detected in soil layers deeper than 15 cm. This demonstrates that no significant leaching occurred. This study demonstrates the the TME tests were quite successful in predicting the fate of carbendazim under field conditions.


Assuntos
Benzimidazóis/toxicidade , Carbamatos , Ecossistema , Fungicidas Industriais/análise , Modelos Teóricos , Poluentes do Solo/análise , Clima , Monitoramento Ambiental
16.
J Environ Monit ; 5(1): 106-10, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12619764

RESUMO

The effects of relative humidity (40-90% RH) and varying glutaraldehyde vapour concentrations (< 0.1 ppm) on the response of an electrochemical fuel cell sensor have been investigated over time (0-400 s). These studies have identified changes in the response of the fuel cell with time after sampling. In particular, it has been found that the maximum cell output for water vapour occurs ca. 10 s after sampling whilst the response to glutaraldehyde occurs much later (> 100 s). For mixtures containing different ratios of water and glutaraldehyde vapours, the time taken to reach maximum fuel cell response varies between 10 and 100 s, depending on the ratio of the two vapours. For instance, glutaraldehyde vapour containing higher % RH has been found to result in shorter times to reach maximum fuel cell response. A comparison was made between measuring glutaraldehyde vapour concentrations in the presence of water vapour at the maximum fuel cell response and also at a fixed interval (240 s) after sampling. Such a comparison resulted in a reduction in the standard error from 36% to 5% for a glutaraldehyde vapour sample (0.023 ppm) measured at different values of relative humidity (40 to 80%). Examination of the effect of the sample volume (30-60 ml) on the response of the fuel cell shows, as expected, an approximate doubling of the fuel cell response. Optimisation of the fuel cell measurement parameters to measure a 60 ml sample leads to a lowering of the limit of detection from 0.083 ppm (for data taken at the maximum cell response) to 0.017 ppm for data measured 240 s after sampling. In the light of recent reductions in the legal limits for exposure to glutaraldehyde, this has important implications for the measurement of glutaraldehyde vapour in the workplace.


Assuntos
Desinfetantes/análise , Glutaral/análise , Eletroquímica , Monitoramento Ambiental/métodos , Umidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Volatilização , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...