Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dis Aquat Organ ; 127(3): 193-200, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29516858

RESUMO

Chytridiomycosis is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd) and is regarded as one of the most significant threats to global amphibian populations. In México, Bd was first reported in 2003 and has now been documented in 13 states. We visited 33 localities and swabbed 199 wild-caught anurans from 7 species (5 native, 2 exotic) across the Mediterranean region of the state of Baja California. Using quantitative PCR, Bd was detected in 94 individuals (47.2% of samples) at 25 of the 33 survey localities for 5 native and 1 exotic frog species. The exotic Xenopus laevis was the only species that tested completely negative for Bd. We found that remoteness, distance to agricultural land, and elevation were the best positive predictors of Bd presence. These are the first Bd-positive results for the state of Baja California, and its presence should be regarded as an additional conservation threat to the region's native frog species.


Assuntos
Anuros/microbiologia , Quitridiomicetos/isolamento & purificação , Micoses/veterinária , Animais , México/epidemiologia , Micoses/epidemiologia
2.
Mol Phylogenet Evol ; 110: 104-121, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28212874

RESUMO

The increased availability of nuclear DNA sequence data has led to a better appreciation of the role and frequency of introgressive hybridization and subsequent mitochondrial capture in misleading phylogenetic hypotheses based on mtDNA sequence data alone. Relationships among members of the alligator lizard genus Elgaria have been addressed with morphology, allozyme and mtDNA sequence data with discordant results. In this study, we use seven nuclear loci (total of 5.9kb) and ∼3kb of mtDNA to infer the phylogenetic relationships among Elgaria species and test whether the discordance among previous phylogenetic hypotheses is due to introgression and mtDNA capture. While gene tree topologies varied among the different loci, we recovered a well-resolved coalescent-based species tree. Contrary to our expectations, the nDNA-only species tree does not support the sister relationship between E. kingii and E. panamintina inferred from the previous allozyme study. Nevertheless, we found evidence for possible mitochondrial capture in two unexpected situations. The first instance of mtDNA capture involves E. paucicarinata from the Cape Region of Baja California. MtDNA recovered a clade comprising E. paucicarinata and the other two peninsular endemics, while the nDNA-only species tree recovered E. paucicarinata as sister to the continental E. kingii. We hypothesize that this discordance is the result of ancient mitochondrial capture rather than incomplete lineage sorting. Additionally, analyses of nDNA recovered E. panamintina as sister to an E. multicarinata North lineage, whereas the mtDNA gene tree recovers E. panamintina nested within a southern E. multicarinata clade. We hypothesize that this discordance also may be due to mitochondrial capture. Additionally, hybridization between these two lineages may have resulted in geographically limited nuclear introgression. Divergence dating analyses suggest that oviparous Elgaria species diverged within a relatively narrow timeframe from the late Miocene to early Pliocene. We find that accounting for introgressed alleles is important when inferring phylogenetic relationships when using coalescent-based approaches.


Assuntos
DNA Mitocondrial/genética , Loci Gênicos , Lagartos/genética , Modelos Genéticos , Filogenia , Animais , Geografia , Mitocôndrias/genética , América do Norte , Fatores de Tempo
3.
Mol Ecol ; 22(6): 1650-65, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23379992

RESUMO

Understanding the biotic consequences of Pleistocene range shifts and fragmentation remains a fundamental goal in historical biogeography and evolutionary biology. Here, we combine species distribution models (SDM) from the present and two late Quaternary time periods with multilocus genetic data (mitochondrial DNA and microsatellites) to evaluate the effect of climate-induced habitat shifts on population genetic structure in the Large-blotched Ensatina (Ensatina eschscholtzii klauberi), a plethodontid salamander endemic to middle and high-elevation conifer forest in the Transverse and Peninsular Ranges of southern California and northern Baja California. A composite SDM representing the range through time predicts two disjunct refugia, one in southern California encompassing the core of the species range and the other in the Sierra San Pedro Mártir of northern Baja California at the southern limit of the species range. Based on our spatial model, we would expect a pattern of high connectivity among populations within the northern refugium and, conversely, a pattern of isolation due to long-term persistence of the Sierra San Pedro Mártir population. Our genetic results are consistent with these predictions based on the hypothetical refugia in that (i) historical measures of population connectivity among stable areas are correlated with gene flow estimates; and (ii) there is strong geographical structure between separate refugia. These results provide evidence for the role of recent climatic change in shaping patterns of population persistence and connectivity within the Transverse and Peninsular Ranges, an evolutionary hotspot.


Assuntos
Mudança Climática , Ecossistema , Genética Populacional , Urodelos/genética , Animais , California , DNA Mitocondrial/genética , Fluxo Gênico , Geografia , México , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA