Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38798613

RESUMO

Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through characterization of hyperactive alleles in C. elegans , we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologs of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states-an active dimer and an inactive monomer-gates the output of the Inversin complex.

2.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352588

RESUMO

Complex carbohydrates called glycans play crucial roles in the regulation of cell and tissue physiology, but how glycans map to nanoscale anatomical features must still be resolved. Here, we present the first nanoscale map of mucin-type O -glycans throughout the entirety of the Caenorhabditis elegans model organism. We construct a library of multifunctional linkers to probe and anchor metabolically labelled glycans in expansion microscopy (ExM), an imaging modality that overcomes the diffraction limit of conventional optical microscopes through the physical expansion of samples embedded in a polyelectrolyte gel matrix. A flexible strategy is demonstrated for the chemical synthesis of linkers with a broad inventory of bio-orthogonal functional groups, fluorophores, anchorage chemistries, and linker arms. Employing C. elegans as a test bed, we resolve metabolically labelled O -glycans on the gut microvilli and other nanoscale anatomical features using our ExM reagents and optimized protocols. We use transmission electron microscopy images of C. elegans nano-anatomy as ground truth data to validate the fidelity and isotropy of gel expansion. We construct whole organism maps of C. elegans O -glycosylation in the first larval stage and identify O -glycan "hotspots" in unexpected anatomical locations, including the body wall furrows. Beyond C. elegans , we provide validated ExM protocols for nanoscale imaging of metabolically labelled glycans on cultured mammalian cells. Together, our results suggest the broad applicability of the multifunctional reagents for imaging glycans and other metabolically labelled biomolecules at enhanced resolutions with ExM.

3.
Genetics ; 222(1)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35792852

RESUMO

How serine/threonine phosphatases are spatially and temporally tuned by regulatory subunits is a fundamental question in cell biology. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins are protein phosphatase 1 catalytic subunit binding partners associated with cardiocutaneous diseases. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize protein phosphatase 1 catalytic subunit to cell-cell junctions, but how ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize and whether they regulate protein phosphatase 1 catalytic subunit activity in vivo is unclear. Through a Caenorhabditis elegans genetic screen, we find that loss of the ankyrin repeat, SH3 domain, proline-rich-region-containing protein homolog, APE-1, suppresses a pathology called "jowls," providing us with an in vivo assay for APE-1 activity. Using immunoprecipitations and mass spectrometry, we find that APE-1 binds the protein phosphatase 1 catalytic subunit called GSP-2. Through structure-function analysis, we discover that APE-1's N-terminal half directs the APE-1-GSP-2 complex to intercellular junctions. Additionally, we isolated mutations in highly conserved residues of APE-1's ankyrin repeats that suppress jowls yet do not preclude GSP-2 binding, implying APE-1 does more than simply localize GSP-2. Indeed, in vivo reconstitution of APE-1 suggests the ankyrin repeats modulate phosphatase output, a function we find to be conserved among vertebrate homologs.


Assuntos
Caenorhabditis elegans , Hominidae , Animais , Caenorhabditis elegans/metabolismo , Prolina/metabolismo , Ligação Proteica , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas/metabolismo , Domínios de Homologia de src
4.
Nat Struct Mol Biol ; 29(4): 339-347, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347313

RESUMO

Clathrin-mediated endocytosis (CME) is the main route of internalization from the plasma membrane. It is known that the heterotetrameric AP2 clathrin adaptor must open to simultaneously engage membrane and endocytic cargo, yet it is unclear how transmembrane cargos are captured to catalyze CME. Using cryogenic-electron microscopy, we discover a new way in which mouse AP2 can reorganize to expose membrane- and cargo-binding pockets, which is not observed in clathrin-coated structures. Instead, it is stimulated by endocytic pioneer proteins called muniscins, which do not enter vesicles. Muniscin-engaged AP2 is primed to rearrange into the vesicle-competent conformation on binding the tyrosine cargo internalization motif (YxxΦ). We propose adaptor priming as a checkpoint to ensure cargo internalization.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular , Clatrina , Complexo 2 de Proteínas Adaptadoras/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Membrana Celular/metabolismo , Clatrina/metabolismo , Endocitose , Camundongos
5.
Elife ; 82019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31464684

RESUMO

Endocytosis of transmembrane proteins is orchestrated by the AP2 clathrin adaptor complex. AP2 dwells in a closed, inactive state in the cytosol, but adopts an open, active conformation on the plasma membrane. Membrane-activated complexes are also phosphorylated, but the significance of this mark is debated. We recently proposed that NECAP negatively regulates AP2 by binding open and phosphorylated complexes (Beacham et al., 2018). Here, we report high-resolution cryo-EM structures of NECAP bound to phosphorylated AP2. The site of AP2 phosphorylation is directly coordinated by residues of the NECAP PHear domain that are predicted from genetic screens in C. elegans. Using membrane mimetics to generate conformationally open AP2, we find that a second domain of NECAP binds these complexes and cryo-EM reveals both domains of NECAP engaging closed, inactive AP2. Assays in vitro and in vivo confirm these domains cooperate to inactivate AP2. We propose that phosphorylation marks adaptors for inactivation.


Assuntos
Complexo 2 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Processamento de Proteína Pós-Traducional , Microscopia Crioeletrônica , Fosforilação , Ligação Proteica
6.
Traffic ; 20(10): 741-751, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31313456

RESUMO

Heterotetrameric clathrin adaptor protein complexes (APs) orchestrate the formation of coated vesicles for transport among organelles of the cell periphery. AP1 binds membranes enriched for phosphatidylinositol 4-phosphate, such as the trans Golgi network, while AP2 associates with phosphatidylinositol 4,5-bisphosphate of the plasma membrane. At their respective membranes, AP1 and AP2 bind the cytoplasmic tails of transmembrane protein cargo and clathrin triskelions, thereby coupling cargo recruitment to coat polymerization. Structural, biochemical and genetic studies have revealed that APs undergo conformational rearrangements and reversible phosphorylation to cycle between different activity states. While membrane, cargo and clathrin have been demonstrated to promote AP activation, growing evidence supports that membrane-associated proteins such as Arf1 and FCHo also stimulate this transition. APs may be returned to the inactive state via a regulated process involving phosphorylation and a protein called NECAP. Finally, because antiviral mechanisms often rely on appropriate trafficking of membrane proteins, viruses have evolved novel strategies to evade host defenses by influencing the conformation of APs. This review will cover recent advances in our understanding of the molecular inputs that stimulate AP1 and AP2 to adopt structurally and functionally distinct configurations.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Complexo 2 de Proteínas Adaptadoras/metabolismo , Sítio Alostérico , Complexo 1 de Proteínas Adaptadoras/química , Complexo 2 de Proteínas Adaptadoras/química , Regulação Alostérica , Animais , Clatrina/química , Clatrina/metabolismo , Humanos
7.
Elife ; 72018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29345618

RESUMO

Eukaryotic cells internalize transmembrane receptors via clathrin-mediated endocytosis, but it remains unclear how the machinery underpinning this process is regulated. We recently discovered that membrane-associated muniscin proteins such as FCHo and SGIP initiate endocytosis by converting the AP2 clathrin adaptor complex to an open, active conformation that is then phosphorylated (Hollopeter et al., 2014). Here we report that loss of ncap-1, the sole C. elegans gene encoding an adaptiN Ear-binding Coat-Associated Protein (NECAP), bypasses the requirement for FCHO-1. Biochemical analyses reveal AP2 accumulates in an open, phosphorylated state in ncap-1 mutant worms, suggesting NECAPs promote the closed, inactive conformation of AP2. Consistent with this model, NECAPs preferentially bind open and phosphorylated forms of AP2 in vitro and localize with constitutively open AP2 mutants in vivo. NECAPs do not associate with phosphorylation-defective AP2 mutants, implying that phosphorylation precedes NECAP recruitment. We propose NECAPs function late in endocytosis to inactivate AP2.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Endocitose , Regulação da Expressão Gênica , Animais , Células Cultivadas , Deleção de Genes
8.
Elife ; 32014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25303366

RESUMO

The AP2 clathrin adaptor complex links protein cargo to the endocytic machinery but it is unclear how AP2 is activated on the plasma membrane. Here we demonstrate that the membrane-associated proteins FCHo and SGIP1 convert AP2 into an open, active conformation. We screened for Caenorhabditis elegans mutants that phenocopy the loss of AP2 subunits and found that AP2 remains inactive in fcho-1 mutants. A subsequent screen for bypass suppressors of fcho-1 nulls identified 71 compensatory mutations in all four AP2 subunits. Using a protease-sensitivity assay we show that these mutations restore the open conformation in vivo. The domain of FCHo that induces this rearrangement is not the F-BAR domain or the µ-homology domain, but rather is an uncharacterized 90 amino acid motif, found in both FCHo and SGIP proteins, that directly binds AP2. Thus, these proteins stabilize nascent endocytic pits by exposing membrane and cargo binding sites on AP2.


Assuntos
Complexo 2 de Proteínas Adaptadoras/química , Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/genética , Proteínas de Transporte/química , Endocitose/genética , Proteínas de Membrana/química , Subunidades Proteicas/química , Complexo 2 de Proteínas Adaptadoras/genética , Complexo 2 de Proteínas Adaptadoras/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Transporte Biológico , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Vesículas Revestidas por Clatrina/ultraestrutura , Invaginações Revestidas da Membrana Celular/metabolismo , Invaginações Revestidas da Membrana Celular/ultraestrutura , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Alinhamento de Sequência , Transdução de Sinais
9.
Elife ; 2: e00723, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24015355

RESUMO

Synaptic vesicles can be released at extremely high rates, which places an extraordinary demand on the recycling machinery. Previous ultrastructural studies of vesicle recycling were conducted in dissected preparations using an intense stimulation to maximize the probability of release. Here, a single light stimulus was applied to motor neurons in intact Caenorhabditis elegans nematodes expressing channelrhodopsin, and the animals rapidly frozen. We found that docked vesicles fuse along a broad active zone in response to a single stimulus, and are replenished with a time constant of about 2 s. Endocytosis occurs within 50 ms adjacent to the dense projection and after 1 s adjacent to adherens junctions. These studies suggest that synaptic vesicle endocytosis may occur on a millisecond time scale following a single physiological stimulus in the intact nervous system and is unlikely to conform to current models of endocytosis. DOI:http://dx.doi.org/10.7554/eLife.00723.001.


Assuntos
Caenorhabditis elegans/metabolismo , Endocitose , Junção Neuromuscular/metabolismo , Animais
10.
Elife ; 2: e00190, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23482940

RESUMO

The clathrin adaptor complex AP2 is thought to be an obligate heterotetramer. We identify null mutations in the α subunit of AP2 in the nematode Caenorhabditis elegans. α-adaptin mutants are viable and the remaining µ2/ß hemicomplex retains some function. Conversely, in µ2 mutants, the alpha/sigma2 hemicomplex is localized and is partially functional. α-µ2 double mutants disrupt both halves of the complex and are lethal. The lethality can be rescued by expression of AP2 components in the skin, which allowed us to evaluate the requirement for AP2 subunits at synapses. Mutations in either α or µ2 subunits alone reduce the number of synaptic vesicles by about 30%; however, simultaneous loss of both α and µ2 subunits leads to a 70% reduction in synaptic vesicles and the presence of large vacuoles. These data suggest that AP2 may function as two partially independent hemicomplexes. DOI:http://dx.doi.org/10.7554/eLife.00190.001.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Endocitose , Vesículas Sinápticas/metabolismo , Complexo 2 de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/genética , Subunidades alfa do Complexo de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/genética , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/genética , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Exocitose , Genótipo , Fenótipo
11.
J Vis Exp ; (70): e3995, 2012 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-23242070

RESUMO

Mapping the distribution of proteins is essential for understanding the function of proteins in a cell. Fluorescence microscopy is extensively used for protein localization, but subcellular context is often absent in fluorescence images. Immuno-electron microscopy, on the other hand, can localize proteins, but the technique is limited by a lack of compatible antibodies, poor preservation of morphology and because most antigens are not exposed to the specimen surface. Correlative approaches can acquire the fluorescence image from a whole cell first, either from immuno-fluorescence or genetically tagged proteins. The sample is then fixed and embedded for electron microscopy, and the images are correlated (1-3). However, the low-resolution fluorescence image and the lack of fiducial markers preclude the precise localization of proteins. Alternatively, fluorescence imaging can be done after preserving the specimen in plastic. In this approach, the block is sectioned, and fluorescence images and electron micrographs of the same section are correlated (4-7). However, the diffraction limit of light in the correlated image obscures the locations of individual molecules, and the fluorescence often extends beyond the boundary of the cell. Nano-resolution fluorescence electron microscopy (nano-fEM) is designed to localize proteins at nano-scale by imaging the same sections using photo-activated localization microscopy (PALM) and electron microscopy. PALM overcomes the diffraction limit by imaging individual fluorescent proteins and subsequently mapping the centroid of each fluorescent spot (8-10). We outline the nano-fEM technique in five steps. First, the sample is fixed and embedded using conditions that preserve the fluorescence of tagged proteins. Second, the resin blocks are sectioned into ultrathin segments (70-80 nm) that are mounted on a cover glass. Third, fluorescence is imaged in these sections using the Zeiss PALM microscope. Fourth, electron dense structures are imaged in these same sections using a scanning electron microscope. Fifth, the fluorescence and electron micrographs are aligned using gold particles as fiducial markers. In summary, the subcellular localization of fluorescently tagged proteins can be determined at nanometer resolution in approximately one week.


Assuntos
Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Proteínas/química , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Congelamento
12.
Proc Natl Acad Sci U S A ; 108(28): 11429-34, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21709265

RESUMO

Many cell movements proceed via a crawling mechanism, where polymerization of the cytoskeletal protein actin pushes out the leading edge membrane. In this model, membrane tension has been seen as an impediment to filament growth and cell motility. Here we use a simple model of cell motility, the Caenorhabditis elegans sperm cell, to test how membrane tension affects movement and cytoskeleton dynamics. To enable these analyses, we create transgenic worm strains carrying sperm with a fluorescently labeled cytoskeleton. Via osmotic shock and deoxycholate treatments, we relax or tense the cell membrane and quantify apparent membrane tension changes by the membrane tether technique. Surprisingly, we find that membrane tension reduction is correlated with a decrease in cell displacement speed, whereas an increase in membrane tension enhances motility. We further demonstrate that apparent polymerization rates follow the same trends. We observe that membrane tension reduction leads to an unorganized, rough lamellipodium, composed of short filaments angled away from the direction of movement. On the other hand, an increase in tension reduces lateral membrane protrusions in the lamellipodium, and filaments are longer and more oriented toward the direction of movement. Overall we propose that membrane tension optimizes motility by streamlining polymerization in the direction of movement, thus adding a layer of complexity to our current understanding of how membrane tension enters into the motility equation.


Assuntos
Movimento Celular/fisiologia , Pseudópodes/fisiologia , Animais , Animais Geneticamente Modificados , Fenômenos Biofísicos , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Genes de Helmintos , Proteínas de Helminto/genética , Proteínas de Helminto/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Modelos Biológicos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/fisiologia , Tensão Superficial , Proteína Vermelha Fluorescente
13.
Nat Methods ; 8(1): 80-4, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21102453

RESUMO

A complete portrait of a cell requires a detailed description of its molecular topography: proteins must be linked to particular organelles. Immunocytochemical electron microscopy can reveal locations of proteins with nanometer resolution but is limited by the quality of fixation, the paucity of antibodies and the inaccessibility of antigens. Here we describe correlative fluorescence electron microscopy for the nanoscopic localization of proteins in electron micrographs. We tagged proteins with the fluorescent proteins Citrine or tdEos and expressed them in Caenorhabditis elegans, fixed the worms and embedded them in plastic. We imaged the tagged proteins from ultrathin sections using stimulated emission depletion (STED) microscopy or photoactivated localization microscopy (PALM). Fluorescence correlated with organelles imaged in electron micrographs from the same sections. We used these methods to localize histones, a mitochondrial protein and a presynaptic dense projection protein in electron micrographs.


Assuntos
Proteínas Luminescentes/análise , Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Nanotecnologia/métodos , Animais , Caenorhabditis elegans , Elétrons , Histonas/análise , Histonas/ultraestrutura , Proteínas Luminescentes/ultraestrutura , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/ultraestrutura
14.
Nat Methods ; 7(6): 451-3, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20418868

RESUMO

We developed a method, MosDEL, to generate targeted knockouts of genes in Caenorhabditis elegans by injection. We generated a double-strand break by mobilizing a Mos1 transposon adjacent to the region to be deleted; the double-stranded break is repaired using injected DNA as a template. Repair can delete up to 25 kb of DNA and simultaneously insert a positive selection marker.


Assuntos
Caenorhabditis elegans/genética , Elementos de DNA Transponíveis/genética , Deleção de Genes , Animais , Hibridização Genômica Comparativa , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Transposases/fisiologia
15.
Nature ; 464(7291): 1006-11, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20228791

RESUMO

Snakes possess a unique sensory system for detecting infrared radiation, enabling them to generate a 'thermal image' of predators or prey. Infrared signals are initially received by the pit organ, a highly specialized facial structure that is innervated by nerve fibres of the somatosensory system. How this organ detects and transduces infrared signals into nerve impulses is not known. Here we use an unbiased transcriptional profiling approach to identify TRPA1 channels as infrared receptors on sensory nerve fibres that innervate the pit organ. TRPA1 orthologues from pit-bearing snakes (vipers, pythons and boas) are the most heat-sensitive vertebrate ion channels thus far identified, consistent with their role as primary transducers of infrared stimuli. Thus, snakes detect infrared signals through a mechanism involving radiant heating of the pit organ, rather than photochemical transduction. These findings illustrate the broad evolutionary tuning of transient receptor potential (TRP) channels as thermosensors in the vertebrate nervous system.


Assuntos
Crotalus/fisiologia , Temperatura Alta , Raios Infravermelhos , Transdução de Sinal Luminoso/fisiologia , Transdução de Sinal Luminoso/efeitos da radiação , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Boidae/genética , Boidae/metabolismo , Galinhas , Clonagem Molecular , Crotalus/anatomia & histologia , Crotalus/genética , Crotalus/metabolismo , Dados de Sequência Molecular , Comportamento Predatório/fisiologia , Comportamento Predatório/efeitos da radiação , Ratos , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/genética , Gânglio Trigeminal/citologia , Gânglio Trigeminal/metabolismo
16.
Proc Natl Acad Sci U S A ; 106(26): 10823-8, 2009 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-19528650

RESUMO

Most neurotransmission is mediated by action potentials, whereas sensory neurons propagate electrical signals passively and release neurotransmitter in a graded manner. Here, we demonstrate that Caenorhabditis elegans neuromuscular junctions release neurotransmitter in a graded fashion. When motor neurons were depolarized by light-activation of channelrhodopsin-2, the evoked postsynaptic current scaled with the strength of the stimulation. When motor neurons were hyperpolarized by light-activation of halorhodopsin, tonic release of synaptic vesicles was decreased. These data suggest that both evoked and tonic neurotransmitter release is graded in response to membrane potential. Acetylcholine synapses are depressed by high-frequency stimulation, in part due to desensitization of the nicotine-sensitve ACR-16 receptor. By contrast, GABA synapses facilitate before becoming depressed. Graded transmission and plasticity confer a broad dynamic range to these synapses. Graded release precisely transmits stimulation intensity, even hyperpolarizing inputs. Synaptic plasticity alters the balance of excitatory and inhibitory inputs into the muscle in a use-dependent manner.


Assuntos
Caenorhabditis elegans/fisiologia , Neurônios Motores/fisiologia , Junção Neuromuscular/fisiologia , Transmissão Sináptica/fisiologia , Acetilcolina/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Estimulação Elétrica , Potenciais Evocados/fisiologia , Potenciais Evocados/efeitos da radiação , Luz , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Microscopia de Fluorescência , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Plasticidade Neuronal/fisiologia , Neurotransmissores/metabolismo , Rodopsinas Sensoriais/genética , Rodopsinas Sensoriais/metabolismo , Ácido gama-Aminobutírico/metabolismo
17.
Nat Neurosci ; 9(12): 1512-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17115040

RESUMO

Microglia are primary immune sentinels of the CNS. Following injury, these cells migrate or extend processes toward sites of tissue damage. CNS injury is accompanied by release of nucleotides, serving as signals for microglial activation or chemotaxis. Microglia express several purinoceptors, including a G(i)-coupled subtype that has been implicated in ATP- and ADP-mediated migration in vitro. Here we show that microglia from mice lacking G(i)-coupled P2Y(12) receptors exhibit normal baseline motility but are unable to polarize, migrate or extend processes toward nucleotides in vitro or in vivo. Microglia in P2ry(12)(-/-) mice show significantly diminished directional branch extension toward sites of cortical damage in the living mouse. Moreover, P2Y(12) expression is robust in the 'resting' state, but dramatically reduced after microglial activation. These results imply that P2Y(12) is a primary site at which nucleotides act to induce microglial chemotaxis at early stages of the response to local CNS injury.


Assuntos
Lesões Encefálicas/imunologia , Quimiotaxia/fisiologia , Proteínas de Membrana/metabolismo , Microglia/metabolismo , Receptores Purinérgicos P2/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/fisiologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/fisiologia , Animais , Lesões Encefálicas/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/imunologia , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Microglia/imunologia , Receptores Purinérgicos P2/imunologia , Receptores Purinérgicos P2Y12
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...