Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Phys Eng Sci Med ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656437

RESUMO

Cervical cancer is a common cancer in women globally, with treatment usually involving radiation therapy (RT). Accurate segmentation for the tumour site and organ-at-risks (OARs) could assist in the reduction of treatment side effects and improve treatment planning efficiency. Cervical cancer Magnetic Resonance Imaging (MRI) segmentation is challenging due to a limited amount of training data available and large inter- and intra- patient shape variation for OARs. The proposed Masked-Net consists of a masked encoder within the 3D U-Net to account for the large shape variation within the dataset, with additional dilated layers added to improve segmentation performance. A new loss function was introduced to consider the bounding box loss during training with the proposed Masked-Net. Transfer learning from a male pelvis MRI data with a similar field of view was included. The approaches were compared to the 3D U-Net which was widely used in MRI image segmentation. The data used consisted of 52 volumes obtained from 23 patients with stage IB to IVB cervical cancer across a maximum of 7 weeks of RT with manually contoured labels including the bladder, cervix, gross tumour volume, uterus and rectum. The model was trained and tested with a 5-fold cross validation. Outcomes were evaluated based on the Dice Similarity Coefficients (DSC), the Hausdorff Distance (HD) and the Mean Surface Distance (MSD). The proposed method accounted for the small dataset, large variations in OAR shape and tumour sizes with an average DSC, HD and MSD for all anatomical structures of 0.790, 30.19mm and 3.15mm respectively.

2.
Phys Med Biol ; 69(8)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38471173

RESUMO

Objectives.Contouring similarity metrics are often used in studies of inter-observer variation and automatic segmentation but do not provide an assessment of clinical impact. This study focused on post-prostatectomy radiotherapy and aimed to (1) identify if there is a relationship between variations in commonly used contouring similarity metrics and resulting dosimetry and (2) identify the variation in clinical target volume (CTV) contouring that significantly impacts dosimetry.Approach.The study retrospectively analysed CT scans of 10 patients from the TROG 08.03 RAVES trial. The CTV, rectum, and bladder were contoured independently by three experienced observers. Using these contours reference simultaneous truth and performance level estimation (STAPLE) volumes were established. Additional CTVs were generated using an atlas algorithm based on a single benchmark case with 42 manual contours. Volumetric-modulated arc therapy (VMAT) treatment plans were generated for the observer, atlas, and reference volumes. The dosimetry was evaluated using radiobiological metrics. Correlations between contouring similarity and dosimetry metrics were calculated using Spearman coefficient (Γ). To access impact of variations in planning target volume (PTV) margin, the STAPLE PTV was uniformly contracted and expanded, with plans created for each PTV volume. STAPLE dose-volume histograms (DVHs) were exported for plans generated based on the contracted/expanded volumes, and dose-volume metrics assessed.Mainresults. The study found no strong correlations between the considered similarity metrics and modelled outcomes. Moderate correlations (0.5 <Γ< 0.7) were observed for Dice similarity coefficient, Jaccard, and mean distance to agreement metrics and rectum toxicities. The observations of this study indicate a tendency for variations in CTV contraction/expansion below 5 mm to result in minor dosimetric impacts.Significance. Contouring similarity metrics must be used with caution when interpreting them as indicators of treatment plan variation. For post-prostatectomy VMAT patients, this work showed variations in contours with an expansion/contraction of less than 5 mm did not lead to notable dosimetric differences, this should be explored in a larger dataset to assess generalisability.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/cirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Resultado do Tratamento
3.
Eur Radiol ; 33(12): 8788-8799, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37405500

RESUMO

OBJECTIVES: To test if tumour changes measured using combination of diffusion-weighted imaging (DWI) MRI and FDG-PET/CT performed serially during radiotherapy (RT) in mucosal head and neck carcinoma can predict treatment response. METHODS: Fifty-five patients from two prospective imaging biomarker studies were analysed. FDG-PET/CT was performed at baseline, during RT (week 3), and post RT (3 months). DWI was performed at baseline, during RT (weeks 2, 3, 5, 6), and post RT (1 and 3 months). The ADCmean from DWI and FDG-PET parameters SUVmax, SUVmean, metabolic tumour volume (MTV), and total lesion glycolysis (TLG) were measured. Absolute and relative change (%∆) in DWI and PET parameters were correlated to 1-year local recurrence. Patients were categorised into favourable, mixed, and unfavourable imaging response using optimal cut-off (OC) values of DWI and FDG-PET parameters and correlated to local control. RESULTS: The 1-year local, regional, and distant recurrence rates were 18.2% (10/55), 7.3% (4/55), and 12.7% (7/55), respectively. ∆Week 3 ADCmean (AUC 0.825, p = 0.003; OC ∆ > 24.4%) and ∆MTV (AUC 0.833, p = 0.001; OC ∆ > 50.4%) were the best predictors of local recurrence. Week 3 was the optimal time point for assessing DWI imaging response. Using a combination of ∆ADCmean and ∆MTV improved the strength of correlation to local recurrence (p ≤ 0.001). In patients who underwent both week 3 MRI and FDG-PET/CT, significant differences in local recurrence rates were seen between patients with favourable (0%), mixed (17%), and unfavourable (78%) combined imaging response. CONCLUSIONS: Changes in mid-treatment DWI and FDG-PET/CT imaging can predict treatment response and could be utilised in the design of future adaptive clinical trials. CLINICAL RELEVANCE STATEMENT: Our study shows the complementary information provided by two functional imaging modalities for mid-treatment response prediction in patients with head and neck cancer. KEY POINTS: •FDG-PET/CT and DWI MRI changes in tumour during radiotherapy in head and neck cancer can predict treatment response. •Combination of FDG-PET/CT and DWI parameters improved correlation to clinical outcome. •Week 3 was the optimal time point for DWI MRI imaging response assessment.


Assuntos
Neoplasias de Cabeça e Pescoço , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Fluordesoxiglucose F18 , Compostos Radiofarmacêuticos , Estudos Prospectivos , Tomografia por Emissão de Pósitrons , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/radioterapia
4.
Radiother Oncol ; 186: 109794, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414257

RESUMO

BACKGROUND AND PURPOSE: Previous studies on automatic delineation quality assurance (QA) have mostly focused on CT-based planning. As MRI-guided radiotherapy is increasingly utilized in prostate cancer treatment, there is a need for more research on MRI-specific automatic QA. This work proposes a clinical target volume (CTV) delineation QA framework based on deep learning (DL) for MRI-guided prostate radiotherapy. MATERIALS AND METHODS: The proposed workflow utilized a 3D dropblock ResUnet++ (DB-ResUnet++) to generate multiple segmentation predictions via Monte Carlo dropout which were used to compute an average delineation and area of uncertainty. A logistic regression (LR) classifier was employed to classify the manual delineation as pass or discrepancy based on the spatial association between the manual delineation and the network's outputs. This approach was evaluated on a multicentre MRI-only prostate radiotherapy dataset and compared with our previously published QA framework based on AN-AG Unet. RESULTS: The proposed framework achieved an area under the receiver operating curve (AUROC) of 0.92, a true positive rate (TPR) of 0.92 and a false positive rate of 0.09 with an average processing time per delineation of 1.3 min. Compared with our previous work using AN-AG Unet, this method generated fewer false positive detections at the same TPR with a much faster processing speed. CONCLUSION: To the best of our knowledge, this is the first study to propose an automatic delineation QA tool using DL with uncertainty estimation for MRI-guided prostate radiotherapy, which can potentially be used for reviewing prostate CTV delineation in multicentre clinical trials.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Radioterapia Guiada por Imagem , Humanos , Masculino , Garantia da Qualidade dos Cuidados de Saúde , Imageamento por Ressonância Magnética , Incerteza , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia
5.
Radiother Oncol ; 184: 109686, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142128

RESUMO

BACKGROUND AND PURPOSE: This study provides a review of the literature assessing whether semiquantitative PET parameters acquired at baseline and/or during definitive (chemo)radiotherapy ("prePET" and "iPET") can predict survival outcomes in patients with oropharyngeal squamous cell carcinoma (OPC), and the impact of human papilloma virus (HPV) status. MATERIAL AND METHODS: A literature search was carried out using PubMed and Embase between 2001 to 2021 in accordance with PRISMA. RESULTS: The analysis included 22 FDG-PET/CT studies [1-22], 19 pre-PET and 3 both pre-PET and iPET, The analysis involved 2646 patients, of which 1483 are HPV-positive (17 studies: 10 mixed and 7 HPV-positive only), 589 are HPV-negative, and 574 have unknown HPV status. Eighteen studies found significant correlations of survival outcomes with pre-PET parameters, most commonly primary or "Total" (combined primary and nodal) metabolic tumour volume and/or total lesional glycolysis. Two studies could not establish significant correlations and both employed SUVmax only. Two studies also could not establish significant correlations when taking into account of the HPV-positive population only. Because of the heterogeneity and lack of standardized methodology, no conclusions on optimal cut-off values can be drawn. Ten studies specifically evaluated HPV-positive patients: five showed positive correlation of pre-PET parameters and survival outcomes, but four of these studies did not include advanced T or N staging in multivariate analysis, and two studies only showed positive correlations after excluding high risk patients with smoking history or adverse CT features. Two studies found that prePET parameters predicted treatment outcomes only in HPV-negative but not HPV-positive patients. Two studies found that iPET parameters could predict outcomes in HPV-positive patients but not prePET parameters. CONCLUSION: The current literature supports high pre-treatment metabolic burden prior to definitive (chemo)radiotherapy can predict poor treatment outcomes for HPV-negative OPC patients. Evidence is conflicting and currently does not support correlation in HPV-positive patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Humanos , Prognóstico , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Papillomavirus Humano , Carcinoma de Células Escamosas/radioterapia , Neoplasias Orofaríngeas/diagnóstico por imagem , Neoplasias Orofaríngeas/terapia , Neoplasias Orofaríngeas/metabolismo , Estudos Retrospectivos , Compostos Radiofarmacêuticos
6.
Phys Eng Sci Med ; 46(3): 1015-1021, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37219797

RESUMO

Radiotherapy treatment planning based only on magnetic resonance imaging (MRI) has become clinically achievable. Though computed tomography (CT) is the gold standard for radiotherapy imaging, directly providing the electron density values needed for planning calculations, MRI has superior soft tissue visualisation to guide treatment planning decisions and optimisation. MRI-only planning removes the need for the CT scan, but requires generation of a substitute/synthetic/pseudo CT (sCT) for electron density information. Shortening the MRI imaging time would improve patient comfort and reduce the likelihood of motion artefacts. A volunteer study was previously carried out to investigate and optimise faster MRI sequences for a hybrid atlas-voxel conversion to sCT for prostate treatment planning. The aim of this follow-on study was to clinically validate the performance of the new optimised sequence for sCT generation in a treated MRI-only prostate patient cohort. 10 patients undergoing MRI-only treatment were scanned on a Siemens Skyra 3T MRI as part of the MRI-only sub-study of the NINJA clinical trial (ACTRN12618001806257). Two sequences were used, the standard 3D T2-weighted SPACE sequence used for sCT conversion which has been previously validated against CT, and a modified fast SPACE sequence, selected based on the volunteer study. Both were used to generate sCT scans. These were then compared to evaluate the fast sequence conversion for anatomical and dosimetric accuracy against the clinically approved treatment plans. The average Mean Absolute Error (MAE) for the body was 14.98 ± 2.35 HU, and for bone was 40.77 ± 5.51 HU. The external volume contour comparison produced a Dice Similarity Coefficient (DSC) of at least 0.976, and an average of 0.985 ± 0.004, and the bony anatomy contour comparison a DSC of at least 0.907, and an average of 0.950 ± 0.018. The fast SPACE sCT agreed with the gold standard sCT within an isocentre dose of -0.28% ± 0.16% and an average gamma pass rate of 99.66% ± 0.41% for a 1%/1 mm gamma tolerance. In this clinical validation study, the fast sequence, which reduced the required imaging time by approximately a factor of 4, produced an sCT with similar clinical dosimetric results compared to the standard sCT, demonstrating its potential for clinical use for treatment planning.


Assuntos
Próstata , Planejamento da Radioterapia Assistida por Computador , Humanos , Masculino , Imageamento por Ressonância Magnética/métodos , Pelve , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
7.
Radiother Oncol ; 183: 109629, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36934895

RESUMO

Multiple outcome prediction models have been developed for Head and Neck Squamous Cell Carcinoma (HNSCC). This systematic review aimed to identify HNSCC outcome prediction model studies, assess their methodological quality and identify those with potential utility for clinical practice. Inclusion criteria were mucosal HNSCC prognostic prediction model studies (development or validation) incorporating clinically available variables accessible at time of treatment decision making and predicting tumour-related outcomes. Eligible publications were identified from PubMed and Embase. Methodological quality and risk of bias were assessed using the checklist for critical appraisal and data extraction for systematic reviews of prediction modelling studies (CHARMS) and prediction model risk of bias assessment tool (PROBAST). Eligible publications were categorised by study type for reporting. 64 eligible publications were identified; 55 reported model development, 37 external validations, with 28 reporting both. CHARMS checklist items relating to participants, predictors, outcomes, handling of missing data, and some model development and evaluation procedures were generally well-reported. Less well-reported were measures accounting for model overfitting and model performance measures, especially model calibration. Full model information was poorly reported (3/55 model developments), specifically model intercept, baseline survival or full model code. Most publications (54/55 model developments, 28/37 external validations) were found to have high risk of bias, predominantly due to methodological issues in the PROBAST analysis domain. The identified methodological issues may affect prediction model accuracy in heterogeneous populations. Independent external validation studies in the local population and demonstration of clinical impact are essential for the clinical implementation of outcome prediction models.


Assuntos
Neoplasias de Cabeça e Pescoço , Avaliação de Resultados em Cuidados de Saúde , Humanos , Viés , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
8.
Cancers (Basel) ; 15(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36765523

RESUMO

In progressing the use of big data in health systems, standardised nomenclature is required to enable data pooling and analyses. In many radiotherapy planning systems and their data archives, target volumes (TV) and organ-at-risk (OAR) structure nomenclature has not been standardised. Machine learning (ML) has been utilised to standardise volumes nomenclature in retrospective datasets. However, only subsets of the structures have been targeted. Within this paper, we proposed a new approach for standardising all the structures nomenclature by using multi-modal artificial neural networks. A cohort consisting of 1613 breast cancer patients treated with radiotherapy was identified from Liverpool & Macarthur Cancer Therapy Centres, NSW, Australia. Four types of volume characteristics were generated to represent each target and OAR volume: textual features, geometric features, dosimetry features, and imaging data. Five datasets were created from the original cohort, the first four represented different subsets of volumes and the last one represented the whole list of volumes. For each dataset, 15 sets of combinations of features were generated to investigate the effect of using different characteristics on the standardisation performance. The best model reported 99.416% classification accuracy over the hold-out sample when used to standardise all the nomenclatures in a breast cancer radiotherapy plan into 21 classes. Our results showed that ML based automation methods can be used for standardising naming conventions in a radiotherapy plan taking into consideration the inclusion of multiple modalities to better represent each volume.

9.
Phys Eng Sci Med ; 46(1): 377-393, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780065

RESUMO

Radiotherapy for thoracic and breast tumours is associated with a range of cardiotoxicities. Emerging evidence suggests cardiac substructure doses may be more predictive of specific outcomes, however, quantitative data necessary to develop clinical planning constraints is lacking. Retrospective analysis of patient data is required, which relies on accurate segmentation of cardiac substructures. In this study, a novel model was designed to deliver reliable, accurate, and anatomically consistent segmentation of 18 cardiac substructures on computed tomography (CT) scans. Thirty manually contoured CT scans were included. The proposed multi-stage method leverages deep learning (DL), multi-atlas mapping, and geometric modelling to automatically segment the whole heart, cardiac chambers, great vessels, heart valves, coronary arteries, and conduction nodes. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD), and volume ratio. Performance was reliable, with no errors observed and acceptable variation in accuracy between cases, including in challenging cases with imaging artefacts and atypical patient anatomy. The median DSC range was 0.81-0.93 for whole heart and cardiac chambers, 0.43-0.76 for great vessels and conduction nodes, and 0.22-0.53 for heart valves. For all structures the median MDA was below 6 mm, median HD ranged 7.7-19.7 mm, and median volume ratio was close to one (0.95-1.49) for all structures except the left main coronary artery (2.07). The fully automatic algorithm takes between 9 and 23 min per case. The proposed fully-automatic method accurately delineates cardiac substructures on radiotherapy planning CT scans. Robust and anatomically consistent segmentations, particularly for smaller structures, represents a major advantage of the proposed segmentation approach. The open-source software will facilitate more precise evaluation of cardiac doses and risks from available clinical datasets.


Assuntos
Coração , Processamento de Imagem Assistida por Computador , Humanos , Estudos Retrospectivos , Processamento de Imagem Assistida por Computador/métodos , Coração/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Algoritmos
10.
Phys Med Biol ; 68(6)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36796102

RESUMO

Objective.To provide an open-source software for repeatable and efficient quantification ofT1andT2relaxation times with the ISMRM/NIST system phantom. Quantitative magnetic resonance imaging (qMRI) biomarkers have the potential to improve disease detection, staging and monitoring of treatment response. Reference objects, such as the system phantom, play a major role in translating qMRI methods into the clinic. The currently available open-source software for ISMRM/NIST system phantom analysis, Phantom Viewer (PV), includes manual steps that are subject to variability.Approach.We developed the Magnetic Resonance BIomarker Assessment Software (MR-BIAS) to automatically extract system phantom relaxation times. The inter-observer variability (IOV) and time efficiency of MR-BIAS and PV was observed in six volunteers analysing three phantom datasets. The IOV was measured with the coefficient of variation (CV) of percent bias (%bias) inT1andT2with respect to NMR reference values. The accuracy of MR-BIAS was compared to a custom script from a published study of twelve phantom datasets. This included comparison of overall bias and %bias for variable inversion recovery (T1VIR), variable flip angle (T1VFA) and multiple spin-echo (T2MSE) relaxation models.Main results.MR-BIAS had a lower mean CV withT1VIR(0.03%) andT2MSE(0.05%) in comparison to PV withT1VIR(1.28%) andT2MSE(4.55%). The mean analysis duration was 9.7 times faster for MR-BIAS (0.8 min) than PV (7.6 min). There was no statistically significant difference in the overall bias, or the %bias for the majority of ROIs, as calculated by MR-BIAS or the custom script for all models.Significance.MR-BIAS has demonstrated repeatable and efficient analysis of the ISMRM/NIST system phantom, with comparable accuracy to previous studies. The software is freely available to the MRI community, providing a framework to automate required analysis tasks, with the flexibility to explore open questions and accelerate biomarker research.


Assuntos
Imageamento por Ressonância Magnética , Software , Humanos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Biomarcadores , Espectroscopia de Ressonância Magnética
11.
Phys Eng Sci Med ; 46(1): 1-17, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36806156

RESUMO

Consistency and clear guidelines on dosimetry are essential for accurate and precise dosimetry, to ensure the best patient outcomes and to allow direct dose comparison across different centres. Magnetic Resonance Imaging Linac (MRI-linac) systems have recently been introduced to Australasian clinics. This report provides recommendations on reference dosimetry measurements for MRI-linacs on behalf of the Australiasian College of Physical Scientists and Engineers in Medicine (ACPSEM) MRI-linac working group. There are two configurations considered for MRI-linacs, perpendicular and parallel, referring to the relative direction of the magnetic field and radiation beam, with different impacts on dose deposition in a medium. These recommendations focus on ion chambers which are most commonly used in the clinic for reference dosimetry. Water phantoms must be MR safe or conditional and practical limitations on phantom set-up must be considered. Solid phantoms are not advised for reference dosimetry. For reference dosimetry, IAEA TRS-398 recommendations cannot be followed completely due to physical differences between conventional linac and MRI-linac systems. Manufacturers' advice on reference conditions should be followed. Beam quality specification of TPR20,10 is recommended. The configuration of the central axis of the ion chamber relative to the magnetic field and radiation beam impacts the chamber response and must be considered carefully. Recommended corrections to delivered dose are [Formula: see text], a correction for beam quality and [Formula: see text], for the impact of the magnetic field on dosimeter response in the magnetic field. Literature based values for [Formula: see text] are given. It is important to note that this is a developing field and these recommendations should be used together with a review of current literature.


Assuntos
Aceleradores de Partículas , Radiometria , Humanos , Campos Magnéticos , Imageamento por Ressonância Magnética , Imagens de Fantasmas
12.
Radiother Oncol ; 176: 179-186, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36208652

RESUMO

INTRODUCTION: Federated learning has the potential to perfrom analysis on decentralised data; however, there are some obstacles to survival analyses as there is a risk of data leakage. This study demonstrates how to perform a stratified Cox regression survival analysis specifically designed to avoid data leakage using federated learning on larynx cancer patients from centres in three different countries. METHODS: Data were obtained from 1821 larynx cancer patients treated with radiotherapy in three centres. Tumour volume was available for all 786 of the included patients. Parameter selection among eleven clinical and radiotherapy parameters were performed using best subset selection and cross-validation through the federated learning system, AusCAT. After parameter selection, ß regression coefficients were estimated using bootstrap. Calibration plots were generated at 2 and 5-years survival, and inner and outer risk groups' Kaplan-Meier curves were compared to the Cox model prediction. RESULTS: The best performing Cox model included log(GTV), performance status, age, smoking, haemoglobin and N-classification; however, the simplest model with similar statistical prediction power included log(GTV) and performance status only. The Harrell C-indices for the simplest model were for Odense, Christie and Liverpool 0.75[0.71-0.78], 0.65[0.59-0.71], and 0.69[0.59-0.77], respectively. The values are slightly higher for the full model with C-index 0.77[0.74-0.80], 0.67[0.62-0.73] and 0.71[0.61-0.80], respectively. Smoking during treatment has the same hazard as a ten-years older nonsmoking patient. CONCLUSION: Without any patient-specific data leaving the hospitals, a stratified Cox regression model based on data from centres in three countries was developed without data leakage risks. The overall survival model is primarily driven by tumour volume and performance status.


Assuntos
Neoplasias Laríngeas , Humanos , Neoplasias Laríngeas/radioterapia , Análise de Sobrevida , Modelos de Riscos Proporcionais , Calibragem , Aprendizagem
13.
J Biomed Inform ; 134: 104181, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055639

RESUMO

INTRODUCTION: Emerging evidence suggests that data-driven support tools have found their way into clinical decision-making in a number of areas, including cancer care. Improving them and widening their scope of availability in various differing clinical scenarios, including for prognostic models derived from retrospective data, requires co-ordinated data sharing between clinical centres, secondary analyses of large multi-institutional clinical trial data, or distributed (federated) learning infrastructures. A systematic approach to utilizing routinely collected data across cancer care clinics remains a significant challenge due to privacy, administrative and political barriers. METHODS: An information technology infrastructure and web service software was developed and implemented which uses machine learning to construct clinical decision support systems in a privacy-preserving manner across datasets geographically distributed in different hospitals. The infrastructure was deployed in a network of Australian hospitals. A harmonized, international ontology-linked, set of lung cancer databases were built with the routine clinical and imaging data at each centre. The infrastructure was demonstrated with the development of logistic regression models to predict major cardiovascular events following radiation therapy. RESULTS: The infrastructure implemented forms the basis of the Australian computer-assisted theragnostics (AusCAT) network for radiation oncology data extraction, reporting and distributed learning. Four radiation oncology departments (across seven hospitals) in New South Wales (NSW) participated in this demonstration study. Infrastructure was deployed at each centre and used to develop a model predicting for cardiovascular admission within a year of receiving curative radiotherapy for non-small cell lung cancer. A total of 10,417 lung cancer patients were identified with 802 being eligible for the model. Twenty features were chosen for analysis from the clinical record and linked registries. After selection, 8 features were included and a logistic regression model achieved an area under the receiver operating characteristic (AUROC) curve of 0.70 and C-index of 0.65 on out-of-sample data. CONCLUSION: The infrastructure developed was demonstrated to be usable in practice between clinical centres to harmonize routinely collected oncology data and develop models with federated learning. It provides a promising approach to enable further research studies in radiation oncology using real world clinical data.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Austrália , Computadores , Sistemas de Apoio a Decisões Clínicas , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Aprendizado de Máquina , Privacidade , Estudos Retrospectivos
14.
Neurooncol Adv ; 4(1): vdac134, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105390

RESUMO

Background: New technologies developed to improve survival outcomes for glioblastoma (GBM) continue to have limited success. Recently, image-guided dose painting (DP) radiotherapy has emerged as a promising strategy to increase local control rates. In this study, we evaluate the practical application of a multiparametric MRI model of glioma infiltration for DP radiotherapy in GBM by measuring its conformity, feasibility, and expected clinical benefits against standard of care treatment. Methods: Maps of tumor probability were generated from perfusion/diffusion MRI data from 17 GBM patients via a previously developed model of GBM infiltration. Prescriptions for DP were linearly derived from tumor probability maps and used to develop dose optimized treatment plans. Conformity of DP plans to dose prescriptions was measured via a quality factor. Feasibility of DP plans was evaluated by dose metrics to target volumes and critical brain structures. Expected clinical benefit of DP plans was assessed by tumor control probability. The DP plans were compared to standard radiotherapy plans. Results: The conformity of the DP plans was >90%. Compared to the standard plans, DP (1) did not affect dose delivered to organs at risk; (2) increased mean and maximum dose and improved minimum dose coverage for the target volumes; (3) reduced minimum dose within the radiotherapy treatment margins; (4) improved local tumor control probability within the target volumes for all patients. Conclusions: A multiparametric MRI model of GBM infiltration can enable conformal, feasible, and potentially beneficial dose painting radiotherapy plans.

15.
Cancers (Basel) ; 14(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36010891

RESUMO

Radiomics is a field of medical imaging analysis that focuses on the extraction of many quantitative imaging features related to shape, intensity and texture. These features are incorporated into models designed to predict important clinical or biological endpoints for patients. Attention for radiomics research has recently grown dramatically due to the increased use of imaging and the availability of large, publicly available imaging datasets. Glioblastoma multiforme (GBM) patients stand to benefit from this emerging research field as radiomics has the potential to assess the biological heterogeneity of the tumour, which contributes significantly to the inefficacy of current standard of care therapy. Radiomics models still require further development before they are implemented clinically in GBM patient management. Challenges relating to the standardisation of the radiomics process and the validation of radiomic models impede the progress of research towards clinical implementation. In this manuscript, we review the current state of radiomics in GBM, and we highlight the barriers to clinical implementation and discuss future validation studies needed to advance radiomics models towards clinical application.

16.
J Med Imaging (Bellingham) ; 9(4): 044005, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35992729

RESUMO

Purpose: Radiomics of magnetic resonance images (MRIs) in rectal cancer can non-invasively characterize tumor heterogeneity with potential to discover new imaging biomarkers. However, for radiomics to be reliable, the imaging features measured must be stable and reproducible. The aim of this study is to quantify the repeatability and reproducibility of MRI-based radiomic features in rectal cancer. Approach: An MRI radiomics phantom was used to measure the longitudinal repeatability of radiomic features and the impact of post-processing changes related to image resolution and noise. Repeatability measurements in rectal cancers were also quantified in a cohort of 10 patients with test-retest imaging among two observers. Results: We found that many radiomic features, particularly from texture classes, were highly sensitive to changes in image resolution and noise. About 49% of features had coefficient of variations ≤ 10 % in longitudinal phantom measurements. About 75% of radiomic features in in vivo test-retest measurements had an intraclass correlation coefficient of ≥ 0.8 . We saw excellent interobserver agreement with mean Dice similarity coefficient of 0.95 ± 0.04 for test and retest scans. Conclusions: The results of this study show that even when using a consistent imaging protocol many radiomic features were unstable. Therefore, caution must be taken when selecting features for potential imaging biomarkers.

17.
Clin Transl Radiat Oncol ; 36: 121-126, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36017132

RESUMO

Background: During the last decade, radiotherapy using MR Linac has gone from research to clinical implementation for different cancer locations. For head and neck cancer (HNC), target delineation based only on MR images is not yet standard, and the utilisation of MRI instead of PET/CT in radiotherapy planning is not well established. We aimed to analyse the inter-observer variation (IOV) in delineating GTV (gross tumour volume) on MR images only for patients with HNC. Material/methods: 32 HNC patients from two independent departments were included. Four clinical oncologists from Denmark and four radiation oncologists from Australia had independently contoured primary tumour GTVs (GTV-T) and nodal GTVs (GTV-N) on T2-weighted MR images obtained at the time of treatment planning. Observers were provided with sets of images, delineation guidelines and patient synopsis. Simultaneous truth and performance level estimation (STAPLE) reference volumes were generated for each structure using all observer contours. The IOV was assessed using the DICE Similarity Coefficient (DSC) and mean absolute surface distance (MASD). Results: 32 GTV-Ts and 68 GTV-Ns were contoured per observer. The median MASD for GTV-Ts and GTV-Ns across all patients was 0.17 cm (range 0.08-0.39 cm) and 0.07 cm (range 0.04-0.33 cm), respectively. Median DSC relative to a STAPLE volume for GTV-Ts and GTV-Ns across all patients were 0.73 and 0.76, respectively. A significant correlation was seen between median DSCs and median volumes of GTV-Ts (Spearman correlation coefficient 0.76, p < 0.001) and of GTV-Ns (Spearman correlation coefficient 0.55, p < 0.001). Conclusion: Contouring GTVs in patients with HNC on MRI showed that the median IOV for GTV-T and GTV-N was below 2 mm, based on observes from two separate radiation departments. However, there are still specific regions in tumours that are difficult to resolve as either malignant tissue or oedema that potentially could be improved by further training in MR-only delineation.

18.
Diagn Progn Res ; 6(1): 14, 2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35922837

RESUMO

BACKGROUND: Anal cancer is a rare cancer with rising incidence. Despite the relatively good outcomes conferred by state-of-the-art chemoradiotherapy, further improving disease control and reducing toxicity has proven challenging. Developing and validating prognostic models using routinely collected data may provide new insights for treatment development and selection. However, due to the rarity of the cancer, it can be difficult to obtain sufficient data, especially from single centres, to develop and validate robust models. Moreover, multi-centre model development is hampered by ethical barriers and data protection regulations that often limit accessibility to patient data. Distributed (or federated) learning allows models to be developed using data from multiple centres without any individual-level patient data leaving the originating centre, therefore preserving patient data privacy. This work builds on the proof-of-concept three-centre atomCAT1 study and describes the protocol for the multi-centre atomCAT2 study, which aims to develop and validate robust prognostic models for three clinically important outcomes in anal cancer following chemoradiotherapy. METHODS: This is a retrospective multi-centre cohort study, investigating overall survival, locoregional control and freedom from distant metastasis after primary chemoradiotherapy for anal squamous cell carcinoma. Patient data will be extracted and organised at each participating radiotherapy centre (n = 18). Candidate prognostic factors have been identified through literature review and expert opinion. Summary statistics will be calculated and exchanged between centres prior to modelling. The primary analysis will involve developing and validating Cox proportional hazards models across centres for each outcome through distributed learning. Outcomes at specific timepoints of interest and factor effect estimates will be reported, allowing for outcome prediction for future patients. DISCUSSION: The atomCAT2 study will analyse one of the largest available cross-institutional cohorts of patients with anal cancer treated with chemoradiotherapy. The analysis aims to provide information on current international clinical practice outcomes and may aid the personalisation and design of future anal cancer clinical trials through contributing to a better understanding of patient risk stratification.

19.
J Appl Clin Med Phys ; 23(10): e13735, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35880651

RESUMO

With the utilization of magnetic resonance (MR) imaging in radiotherapy increasing, routine quality assurance (QA) of these systems is necessary. The assessment of geometric distortion in images used for radiotherapy treatment planning needs to be quantified and monitored over time. This work presents an adaptable methodology for performing routine QA for systematic MRI geometric distortion. A software tool and compatible protocol (designed to work with any CT and MR compatible phantom on any scanner) were developed to quantify geometric distortion via deformable image registration. The MR image is deformed to the CT, generating a deformation field, which is sampled, quantifying geometric distortion as a function of distance from scanner isocenter. Configurability of the QA tool was tested, and results compared to those provided from commercial solutions. Registration accuracy was investigated by repeating the deformable registration step on the initial deformed MR image to define regions with residual distortions. The geometric distortion of four clinical systems was quantified using the customisable QA method presented. Maximum measured distortions varied from 2.2 to 19.4 mm (image parameter and sampling volume dependent). The workflow was successfully customized for different phantom configurations and volunteer imaging studies. Comparison to a vendor supplied solution showed good agreement in regions where the two procedures were sampling the same imaging volume. On a large field of view phantom across various scanners, the QA tool accurately quantified geometric distortions within 17-22 cm from scanner isocenter. Beyond these regions, the geometric integrity of images in clinical applications should be considered with a higher degree of uncertainty due to increased gradient nonlinearity and B0 inhomogeneity. This tool has been successfully integrated into routine QA of the MRI scanner utilized for radiotherapy within our department. It enables any low susceptibility MR-CT compatible phantom to quantify the geometric distortion on any MRI scanner with a configurable, user friendly interface for ease of use and consistency in data collection and analysis.


Assuntos
Imageamento por Ressonância Magnética , Radioterapia (Especialidade) , Humanos , Fluxo de Trabalho , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Software , Processamento de Imagem Assistida por Computador/métodos
20.
Phys Imaging Radiat Oncol ; 23: 8-15, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35734265

RESUMO

Background and purpose: Glioblastoma (GBM) patients have a dismal prognosis. Tumours typically recur within months of surgical resection and post-operative chemoradiation. Multiparametric magnetic resonance imaging (mpMRI) biomarkers promise to improve GBM outcomes by identifying likely regions of infiltrative tumour in tumour probability (TP) maps. These regions could be treated with escalated dose via dose-painting radiotherapy to achieve higher rates of tumour control. Crucial to the technical validation of dose-painting using imaging biomarkers is the repeatability of the derived dose prescriptions. Here, we quantify repeatability of dose-painting prescriptions derived from mpMRI. Materials and methods: TP maps were calculated with a clinically validated model that linearly combined apparent diffusion coefficient (ADC) and relative cerebral blood volume (rBV) or ADC and relative cerebral blood flow (rBF) data. Maps were developed for 11 GBM patients who received two mpMRI scans separated by a short interval prior to chemoradiation treatment. A linear dose mapping function was applied to obtain dose-painting prescription (DP) maps for each session. Voxel-wise and group-wise repeatability metrics were calculated for parametric, TP and DP maps within radiotherapy margins. Results: DP maps derived from mpMRI were repeatable between imaging sessions (ICC > 0.85). ADC maps showed higher repeatability than rBV and rBF maps (Wilcoxon test, p = 0.001). TP maps obtained from the combination of ADC and rBF were the most stable (median ICC: 0.89). Conclusions: Dose-painting prescriptions derived from a mpMRI model of tumour infiltration have a good level of repeatability and can be used to generate reliable dose-painting plans for GBM patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...