Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 87(11): 11E547, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910649

RESUMO

The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

2.
Rev Sci Instrum ; 81(10): 10D513, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033868

RESUMO

Two standard commercial flashlamp-pumped Nd:YAG (YAG denotes yttrium aluminum garnet) lasers have been upgraded to "pulse-burst" capability. Each laser produces a burst of up to 15 2 J Q-switched pulses (1064 nm) at repetition rates of 1-12.5 kHz. Variable pulse-width drive (0.15-0.39 ms) of the flashlamps is accomplished by insulated gate bipolar transistor (IGBT) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, and up to four 2 J laser pulses during one flashlamp pulse. These lasers are used in the Thomson scattering plasma diagnostic system on the MST reversed-field pinch to record the dynamic evolution of the electron temperature profile and temperature fluctuations. To further these investigations, a custom pulse-burst laser system with a maximum pulse repetition rate of 250 kHz is now being commissioned.

3.
Rev Sci Instrum ; 79(10): 10E733, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044549

RESUMO

The multipoint Thomson scattering diagnostic on the Madison Symmetric Torus (MST) is now fully operational with 21 spatial points, which cover the entire minor radius. Four full electron temperature profiles can be obtained during each MST discharge, with a variable delay between each profile. This system overcomes challenges that arise from the unique machine design, location, and plasma characteristics of MST. The machine design limits the maximum porthole diameter to 11.4 cm, requiring a compact, re-entrant, seven element lens for scattered light collection. Limited space near MST necessitates a long beam path for the two Nd:YAG lasers requiring a remote beam line adjustment system to suppress drift in the beam position due to thermal expansion of the building. Due to the remote location of the laser head, substantial design effort was put into the creation of a set of safety interlocks for the laser system. The dynamic nature of MST plasmas and the wide range of operating space require a versatile scattered light detection system consisting of filter polychromators with temperature controlled avalanche photodiode detectors. We also implement an insertable integrating sphere, which travels along the laser beam path through the vacuum vessel, for the alignment of both the fiber optics and the lasers.

4.
Rev Sci Instrum ; 79(10): 10E734, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044550

RESUMO

Detailed calibrations of the Madison Symmetric Torus polychromator Thomson scattering system have been made suitable for electron temperature fluctuation measurements. All calibrations have taken place focusing on accuracy, ease of use and repeatability, and in situ measurements wherever possible. Novel calibration processes have been made possible with an insertable integrating sphere (ISIS), using an avalanche photodiode (APD) as a reference detector and optical parametric oscillator (OPO). Discussed are a novel in situ spatial calibration with the use of the ISIS, the use of an APD as a reference detector to streamline the APD calibration process, a standard dc spectral calibration, and in situ pulsed spectral calibration made possible with a combination of an OPO as a light source, the ISIS, and an APD used as a reference detector. In addition a relative quantum efficiency curve for the APDs is obtained to aid in uncertainty analysis.

5.
Rev Sci Instrum ; 79(10): 10E735, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044551

RESUMO

The Madison Symmetric Torus (MST) presents challenging conditions for Thomson scattering (TS) measurements. The MST plasmas are reversed-field pinches (RFPs) with electron density n(e)<3x10(13) cm(-3), typically 1x10(13) cm(-3). The TS system was designed to measure from 10 eV to 2 keV; however, six polychromators were upgraded from four to eight spectral channels to resolve to 10 keV. There is no diverter or vertical field, so wall interaction results in high background light both from ion and neutral bremsstrahlungs and from line radiation. Also during standard plasmas, the RFP exhibits regular reconnection sawteeth events during which the plasma current, density, and temperature profiles are flattened. These events are of interest both due to the reconnection physics and to their contribution to the MST equilibrium and confinement. These events occur over 100 microS and exhibit large changes in background light and fast changes in temperature. During improved confinement plasmas, there are no sawteeth; the background is low but the temperature can be over an order of magnitude higher. Data analysis of the system has been developed to accommodate both the large dynamic range of the temperature, the fast dynamics, and the fast changing, high amplitude background. Special attention has been paid to the sources of error, in particular, the contribution of the background. A response-function method reduces the measured uncertainty by a factor of 2. Numerical techniques have been developed which are extremely robust. Two methods are used, a conventional chi(2) minimization using a Levenberg-Marquardt algorithm coupled with Monte Carlo modeling for the error bar and a Bayesian statistics method. The Bayesian method computes the probability distribution for the measured photons and electron temperature and this information can be used to ensemble data and will allow future integrated data analysis efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...