Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chest ; 164(2): 503-516, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36925044

RESUMO

BACKGROUND: OSA is a common sleep-breathing disorder linked to increased risk of cardiovascular disease. Intermittent upper airway obstruction and hypoxia, hallmarks of OSA, have been shown in animal models to induce substantial changes to the gut microbiota composition, and subsequent transplantation of fecal matter to other animals induced changes in BP and glucose metabolism. RESEARCH QUESTION: Does OSA in adults associate with the composition and functional potential of the human gut microbiota? STUDY DESIGN AND METHODS: We used respiratory polygraphy data from up to 3,570 individuals 50 to 64 years of age from the population-based Swedish Cardiopulmonary bioimage Study combined with deep shotgun metagenomics of fecal samples to identify cross-sectional associations between three OSA parameters covering apneas and hypopneas, cumulative sleep time in hypoxia, and number of oxygen desaturation events with gut microbiota composition. Data collection about potential confounders was based on questionnaires, onsite anthropometric measurements, plasma metabolomics, and linkage with the Swedish Prescribed Drug Register. RESULTS: We found that all three OSA parameters were associated with lower diversity of species in the gut. Furthermore, in multivariable-adjusted analysis, the OSA-related hypoxia parameters were associated with the relative abundance of 128 gut bacterial species, including higher abundance of Blautia obeum and Collinsella aerofaciens. The latter species was also independently associated with increased systolic BP. Furthermore, the cumulative time in hypoxia during sleep was associated with the abundance of genes involved in nine gut microbiota metabolic pathways, including propionate production from lactate. Finally, we observed two heterogeneous sets of plasma metabolites with opposite association with species positively and negatively associated with hypoxia parameters, respectively. INTERPRETATION: OSA-related hypoxia, but not the number of apneas/hypopneas, is associated with specific gut microbiota species and functions. Our findings lay the foundation for future research on the gut microbiota-mediated health effects of OSA.


Assuntos
Microbioma Gastrointestinal , Apneia Obstrutiva do Sono , Adulto , Animais , Humanos , Estudos Transversais , Suécia/epidemiologia , Hipóxia
2.
APMIS ; 130(10): 605-611, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35801409

RESUMO

Here, we present a longitudinal shotgun sequencing metagenomics study of 16 healthy, Danish women in the reproductive age. The aim of the study was to investigate whether lactobacilli, orally consumed, had any impact on the vaginal microbiome and its functional potential. The 16 women aged 19-45 years were recruited from Copenhagen, Denmark. One baseline vaginal sample (Day 0) and two study samples (Days 25-30 and Days 55-60, respectively), were sampled. The vaginal samples were analyzed by shotgun metagenomics. We detected 26 species in the vaginal microbiota of the 16 women, of which six belonged to the Lactobacillus genus. We observed three vaginal microbiome clusters mainly dominated by Gardnerella vaginalis, Lactobacillus iners, or Lactobacillus crispatus. The oral probiotic had no detectable effect on either the composition or the functional potential of the vaginal microbiota. Most of the study subjects (11 out of 16 women) exhibited only minor changes in the vaginal microbiome during the treatment with probiotics. Any compositional changes could not be associated to the probiotic treatment. Future studies may benefit from an increased number of participants, and administration of the probiotics during conditions with bacterial imbalance (e.g., during/after antibiotic treatment) or the use of different Lactobacillus spp. known to colonize the vagina.


Assuntos
Microbiota , Probióticos , Vaginose Bacteriana , Feminino , Gardnerella vaginalis , Humanos , Vagina/microbiologia
3.
BMC Microbiol ; 21(1): 256, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34551705

RESUMO

BACKGROUND: Microbial dysbiosis with increased Staphylococcus aureus (S. aureus) colonization on the skin is a hallmark of atopic dermatitis (AD), however most microbiome studies focus on bacteria in the flexures and the microbial composition at other body sites have not been studied systematically. OBJECTIVES: The aim of the study is to characterize the skin microbiome, including bacteria, fungi and virus, at different body sites in relation to AD, lesional state, and S. aureus colonization, and to test whether the nares could be a reservoir for S. aureus strain colonization. METHODS: Using shotgun metagenomics we characterized microbial compositions from 14 well defined skin sites from 10 patients with AD and 5 healthy controls. RESULTS: We found clear differences in microbial composition between AD and controls at multiple skin sites, most pronounced on the flexures and neck. The flexures exhibited lower alpha-diversity and were colonized by S. aureus, accompanied by S. epidermidis in lesions. Malassezia species were absent on the neck in AD. Virus mostly constituted Propionibacterium and Staphylococcus phages, with increased abundance of Propionibacterium phages PHL041 and PHL092 and Staphylococcus epidermidis phages CNPH82 and PH15 in AD. In lesional samples, both the genus Staphylococcus and Staphylococcus phages were more abundant. S. aureus abundance was higher across all skin sites except from the feet. In samples where S. aureus was highly abundant, lower abundances of S. hominis and Cutibacterium acnes were observed. M. osloensis and M. luteus were more abundant in AD. By single nucleotide variant analysis of S. aureus we found strains to be subject specific. On skin sites some S. aureus strains were similar and some dissimilar to the ones in the nares. CONCLUSIONS: Our data indicate a global and site-specific dysbiosis in AD, involving both bacteria, fungus and virus. When defining targeted treatment clinicians should both consider the individual and skin site and future research into potential crosstalk between microbiota in AD yields high potential.


Assuntos
Bactérias/genética , Dermatite Atópica/microbiologia , Disbiose/microbiologia , Fungos/genética , Microbiota/genética , Pele/microbiologia , Infecções Estafilocócicas/microbiologia , Vírus/genética , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Estudos de Casos e Controles , Dermatite Atópica/patologia , Feminino , Fungos/classificação , Fungos/isolamento & purificação , Fungos/patogenicidade , Humanos , Masculino , Pessoa de Meia-Idade , Staphylococcus aureus/patogenicidade , Vírus/classificação , Vírus/isolamento & purificação , Vírus/patogenicidade
4.
Cell ; 180(6): 1067-1080.e16, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-32160527

RESUMO

Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particularly after the first relapse. In a proof-of-concept study, we supplemented PA to therapy-naive MS patients and as an add-on to MS immunotherapy. After 2 weeks of PA intake, we observed a significant and sustained increase of functionally competent regulatory T (Treg) cells, whereas Th1 and Th17 cells decreased significantly. Post-hoc analyses revealed a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after 3 years of PA intake. Functional microbiome analysis revealed increased expression of Treg-cell-inducing genes in the intestine after PA intake. Furthermore, PA normalized Treg cell mitochondrial function and morphology in MS. Our findings suggest that PA can serve as a potent immunomodulatory supplement to MS drugs.


Assuntos
Esclerose Múltipla/metabolismo , Propionatos/imunologia , Propionatos/metabolismo , Adulto , Idoso , Progressão da Doença , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Imunomodulação/fisiologia , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/terapia , Propionatos/uso terapêutico , Linfócitos T Reguladores/imunologia , Células Th17/imunologia
5.
Cells ; 9(2)2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041265

RESUMO

The impact of the gut microbiome is being increasingly appreciated in health and in various chronic diseases, among them neurodegenerative disorders such as Parkinson's disease (PD). In the pathogenesis of PD, the role of the gut has been previously established. In conjunction with a better understanding of the intestinal microbiome, a link to the misfolding and spread of alpha-synuclein via inflammatory processes within the gut is discussed. In a case-control study, we assessed the gut microbiome of 54 PD patients and 32 healthy controls (HC). Additionally, we tested in this proof-of-concept study whether dietary intervention alone or additional physical colon cleaning may lead to changes of the gut microbiome in PD. 16 PD patients underwent a well-controlled balanced, ovo-lacto vegetarian diet intervention including short fatty acids for 14 days. 10 of those patients received additional treatment with daily fecal enema over 8 days. Stool samples were collected before and after 14 days of intervention. In comparison to HC, we could confirm previously reported PD associated microbiome changes. The UDPRS III significantly improved and the levodopa-equivalent daily dose decreased after vegetarian diet and fecal enema in a one-year follow-up. Additionally, we observed a significant association between the gut microbiome diversity and the UPDRS III and the abundance of Ruminococcaceae. Additionally, the abundance of Clostridiaceae was significantly reduced after enema. Dietary intervention and bowel cleansing may provide an additional non-pharmacologic therapeutic option for PD patients.


Assuntos
Catárticos/farmacologia , Dieta , Microbioma Gastrointestinal , Atividade Motora , Doença de Parkinson/microbiologia , Doença de Parkinson/fisiopatologia , Bactérias/efeitos dos fármacos , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Levodopa/farmacologia , Levodopa/uso terapêutico , Masculino , Pessoa de Meia-Idade , Atividade Motora/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Filogenia , Análise de Componente Principal
6.
Sci Rep ; 9(1): 15582, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666597

RESUMO

Enteroendocrine L-cell derived peptide hormones, notably glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2), have become important targets in the treatment of type 2 diabetes, obesity and intestinal diseases. As gut microbial imbalances and maladaptive host responses have been implicated in the pathology of obesity and diabetes, this study aimed to determine the effects of pharmacologically stimulated GLP-1 and GLP-2 receptor function on the gut microbiome composition in diet-induced obese (DIO) mice. DIO mice received treatment with a selective GLP-1 receptor agonist (liraglutide, 0.2 mg/kg, BID) or dual GLP-1/GLP-2 receptor agonist (GUB09-145, 0.04 mg/kg, BID) for 4 weeks. Both compounds suppressed caloric intake, promoted a marked weight loss, improved glucose tolerance and reduced plasma cholesterol levels. 16S rDNA sequencing and deep-sequencing shotgun metagenomics was applied for comprehensive within-subject profiling of changes in gut microbiome signatures. Compared to baseline, DIO mice assumed phylogenetically similar gut bacterial compositional changes following liraglutide and GUB09-145 treatment, characterized by discrete shifts in low-abundant species and related bacterial metabolic pathways. The microbiome alterations may potentially associate to the converging biological actions of GLP-1 and GLP-2 receptor signaling on caloric intake, glucose metabolism and lipid handling.


Assuntos
Dieta/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 2/agonistas , Obesidade/metabolismo , Obesidade/microbiologia , Animais , Liraglutida/farmacologia , Masculino , Metagenoma/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico
7.
Am J Physiol Endocrinol Metab ; 317(1): E42-E52, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860877

RESUMO

Overnutrition is the principal cause of insulin resistance (IR) and dyslipidemia, which drive nonalcoholic fatty liver disease (NAFLD). Overnutrition is further linked to disrupted bowel function, microbiota alterations, and change of function in gut-lining cell populations, including Paneth cells of the small intestine. Paneth cells regulate microbial diversity through expression of antimicrobial peptides, particularly human α-defensin-5 (HD-5), and have shown repressed secretory capacity in human obesity. Mice were fed a 60% high-fat diet for 13 wk and subsequently treated with physiologically relevant amounts of HD-5 (0.001%) or vehicle for 10 wk. The glucoregulatory capacity was determined by glucose tolerance tests and measurements of corresponding insulin concentrations both before and during intervention. Gut microbiome composition was examined by 16S rRNA gene amplicon sequencing. HD-5-treated mice exhibited improved glucoregulatory capacity along with an ameliorated plasma and liver lipid profile. This was accompanied by specific decrease in jejunal inflammation and gut microbiota alterations including increased Bifidobacterium abundances, which correlated inversely with metabolic dysfunctions. This study provides proof of concept for the use of human defensins to improve host metabolism by mitigating the triad cluster of dyslipidemia, IR, and NAFLD.


Assuntos
Metabolismo dos Carboidratos/efeitos dos fármacos , Dislipidemias/tratamento farmacológico , Glucose/metabolismo , Obesidade/tratamento farmacológico , alfa-Defensinas/uso terapêutico , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Dieta Hiperlipídica , Dislipidemias/metabolismo , Homeostase/efeitos dos fármacos , Humanos , Insulina/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Celulas de Paneth/metabolismo , alfa-Defensinas/metabolismo
8.
J Nutr Biochem ; 66: 98-109, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30776610

RESUMO

Low-fat diets and exercise are generally assumed to ameliorate obesity-related metabolic dysfunctions, but the importance of exercise vs. dietary changes is debated. Male C57BL/6J mice were fed a high-fat/high-sucrose (HF/HS) diet to induce obesity and then either maintained on the HF/HS or shifted to low-fat (LF) diets containing either salmon or entrecote. For each diet, half of the animals exercised voluntarily for 8 weeks. We determined body composition, glucose tolerance, insulin sensitivity and hepatic triacylglycerol levels. The microbiota composition in cecal and fecal samples was analyzed using 16S ribosomal RNA gene amplicon sequencing. Voluntary exercise improved insulin sensitivity but did not improve glucose tolerance. Voluntary exercise did not reduce adiposity in mice maintained on an HF/HS diet but enhanced LF-induced reduction in adiposity. Hepatic triacylglycerol levels were reduced by voluntary exercise in LF- but not HF/HS-fed mice. Voluntary exercise induced shifts in the cecal and fecal microbiota composition and functional potential in mice fed LF or HF/HS diets. Whereas voluntary exercise improved insulin sensitivity, a switch to an LF diet was the most important factor related to body weight and fat mass reduction.


Assuntos
Adiposidade , Proteínas Alimentares/farmacologia , Resistência à Insulina , Obesidade/terapia , Animais , Peso Corporal , Dieta com Restrição de Gorduras , Gorduras na Dieta/farmacocinética , Ingestão de Energia , Microbioma Gastrointestinal , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Nitrogênio/metabolismo , Obesidade/metabolismo , Obesidade/microbiologia , Condicionamento Físico Animal , Salmão , Triglicerídeos/metabolismo
9.
Appl Physiol Nutr Metab ; 43(1): 1-10, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28829923

RESUMO

During weight loss, dairy calcium is proposed to accelerate weight and fat-mass loss through increased fecal fat excretion. The primary objective was to investigate if a high-dairy energy-restricted diet is superior to low dairy in terms of changes in body weight, body composition, and fecal fat excretion over 24 weeks. Secondary objectives included fecal energy and calcium excretion, resting energy expenditure, blood pressure, lipid metabolism, and gut microbiota. In a randomized, parallel-arm intervention study, 11 men and 69 women (body mass index, 30.6 ± 0.3 kg/m2; age, 44 ± 1 years) were allocated to a 500-kcal (2100 kJ) -deficit diet that was either high (HD: 1500 mg calcium/day) or low (LD: 600 mg calcium/day) in dairy products for 24 weeks. Habitual calcium intake was ∼1000 mg/day. Body weight loss (HD: -6.6 ± 1.3 kg, LD: -7.9 ± 1.5 kg, P = 0.73), fat-mass loss (HD: -7.8% ± 1.3%, LD: -8.5% ± 1.1%, P = 0.76), changes in fecal fat excretion (HD: -0.57 ± 0.76 g, LD: 0.46 ± 0.70 g, P = 0.12), and microbiota composition were similar for the groups over 24 weeks. However, total fat-mass loss was positively associated with relative abundance of Papillibacter (P = 0.017) independent of diet group. Consumption of a high-dairy diet did not increase fecal fat or accelerate weight and fat-mass loss beyond energy restriction over 24 weeks in overweight and obese adults with a habitual calcium intake of ∼1000 mg/day. However, this study indicates that Papillibacter is involved in body compositional changes.


Assuntos
Cálcio da Dieta/administração & dosagem , Restrição Calórica , Laticínios , Metabolismo Energético , Microbioma Gastrointestinal , Intestinos/microbiologia , Sobrepeso/dietoterapia , Redução de Peso , Adiposidade , Adulto , Cálcio da Dieta/efeitos adversos , Cálcio da Dieta/metabolismo , Restrição Calórica/efeitos adversos , Laticínios/efeitos adversos , Dinamarca , Fezes/química , Fezes/microbiologia , Feminino , Humanos , Metabolismo dos Lipídeos , Masculino , Pessoa de Meia-Idade , Sobrepeso/diagnóstico , Sobrepeso/microbiologia , Sobrepeso/fisiopatologia , Fatores de Tempo , Resultado do Tratamento
10.
Eur J Immunol ; 47(2): 257-268, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27891580

RESUMO

A hallmark of parasite infection is the accumulation of innate immune cells, notably granulocytes and mast cells, at the site of infection. While this is typically viewed as a transient response, with the tissue returning to steady state once the infection is cleared, we found that mast cells accumulated in the large-intestinal epithelium following infection with the nematode Trichuris muris and persisted at this site for several months after worm expulsion. Mast cell accumulation in the epithelium was associated with the induction of type-2 immunity and appeared to be driven by increased maturation of local progenitors in the intestinal lamina propria. Furthermore, we also detected increased local and systemic levels of the mucosal mast cell protease MCPt-1, which correlated highly with the persistent epithelial mast cell population. Finally, the mast cells appeared to have striking consequences on epithelial barrier integrity, by regulation of gut permeability long after worm expulsion. These findings highlight the importance of mast cells not only in the early phases of infection but also at later stages, which has functional implications on the mucosal tissue.


Assuntos
Células Epiteliais/fisiologia , Mucosa Intestinal/imunologia , Mastócitos/fisiologia , Tricuríase/imunologia , Trichuris/imunologia , Doença Aguda , Animais , Células Cultivadas , Quimases/metabolismo , Células Epiteliais/parasitologia , Feminino , Fator de Transcrição GATA1/genética , Homeostase , Interações Hospedeiro-Parasita , Mucosa Intestinal/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th2/imunologia
11.
Nature ; 535(7612): 376-81, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27409811

RESUMO

Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.


Assuntos
Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Metaboloma , Soro/metabolismo , Aminoácidos de Cadeia Ramificada/biossíntese , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Bacteroides/fisiologia , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/microbiologia , Jejum/sangue , Jejum/metabolismo , Intolerância à Glucose/sangue , Intolerância à Glucose/microbiologia , Humanos , Masculino , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Países Baixos , Prevotella/fisiologia
12.
Adipocyte ; 5(2): 196-211, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386160

RESUMO

The notion that the obesogenic potential of high fat diets in rodents is attenuated when the protein:carbohydrate ratio is increased is largely based on studies using casein or whey as the protein source. We fed C57BL/6J mice high fat-high protein diets using casein, soy, cod, beef, chicken or pork as protein sources. Casein stood out as the most efficient in preventing weight gain and accretion of adipose mass. By contrast, mice fed diets based on pork or chicken, and to a lesser extent mice fed cod or beef protein, had increased adipose tissue mass gain relative to casein fed mice. Decreasing the protein:carbohydrate ratio in diets with casein or pork as protein sources led to accentuated fat mass accumulation. Pork fed mice were more obese than casein fed mice, and relative to casein, the pork-based feed induced substantial accumulation of fat in classic interscapular brown adipose tissue accompanied by decreased UCP1 expression. Furthermore, intake of a low fat diet with casein, but not pork, as a protein source reversed diet-induced obesity. Compared to pork, casein seems unique in maintaining the classical brown morphology in interscapular brown adipose tissue with high UCP1 expression. This was accompanied by increased expression of genes involved in a futile cycling of fatty acids. Our results demonstrate that intake of high protein diets based on other protein sources may not have similar effects, and hence, the obesity protective effect of high protein diets is clearly modulated by protein source.

13.
J Nutr Biochem ; 31: 127-36, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27133432

RESUMO

High protein diets may protect against diet-induced obesity, but little is known regarding the effects of different protein sources consumed at standard levels. We investigated how a mixture of lean seafood or lean meat in a Western background diet modulated diet-induced obesity, energy metabolism and gut microbiota. Male C57BL/6J mice fed a Western diet (WD) containing a mixture of lean seafood (seafood WD) for 12weeks accumulated less fat mass than mice fed a WD containing a mixture of lean meat (meat WD). Meat WD-fed mice exhibited increased fasting blood glucose, impaired glucose clearance, elevated fasting plasma insulin and increased plasma and liver lipid levels. We observed no first choice preference for either of the WDs, but over time, mice fed the seafood WD consumed less energy than mice fed the meat WD. Mice fed the seafood WD exhibited higher spontaneous locomotor activity and a lower respiratory exchange ratio (RER) than mice fed the meat WD. Thus, higher activity together with the decreased energy intake contributed to the different phenotypes observed in mice fed the seafood WD compared to mice fed the meat WD. Comparison of the gut microbiomes of mice fed the two WDs revealed significant differences in the relative abundance of operational taxonomic units (OTUs) belonging to the orders Bacteroidales and Clostridiales, with genes involved in metabolism of aromatic amino acids exhibiting higher relative abundance in the microbiomes of mice fed the seafood WD.


Assuntos
Dieta Ocidental , Dieta , Intestinos/microbiologia , Carne , Microbiota , Obesidade , Alimentos Marinhos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Toxicol Sci ; 150(1): 178-89, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26732887

RESUMO

Studies report that fetal exposure to paracetamol/acetaminophen by maternal consumption can interfere with male reproductive development. Moreover, recent biomonitoring data report widespread presence of paracetamol in German and Danish populations, suggesting exposure via secondary (nonpharmaceutical) sources, such as metabolic conversion from the ubiquitous industrial compound aniline. In this study, we investigated the extent to which paracetamol and aniline can interfere with female reproductive development. Intrauterine exposure to paracetamol by gavage of pregnant dams resulted in shortening of the anogenital distance in adult offspring, suggesting that fetal hormone signaling had been disturbed. Female offspring of paracetamol-exposed mothers had ovaries with diminished follicle reserve and reduced fertility. Fetal gonads of exposed animals had also reduced gonocyte numbers, suggesting that the reduced follicle count in adults could be due to early disruption of germ cell development. However, ex vivo cultures of ovaries from 12.5 days post coitum fetuses showed no decrease in proliferation or expression following exposure to paracetamol. This suggests that the effect of paracetamol occurs prior to this developmental stage. Accordingly, using embryonic stem cells as a proxy for primordial germ cells we show that paracetamol is an inhibitor of cellular proliferation, but without cytotoxic effects. Collectively, our data show that intrauterine exposure to paracetamol at levels commonly observed in pregnant women, as well as its precursor aniline, may block primordial germ cell proliferation, ultimately leading to reduced follicle reserves and compromised reproductive capacity later in life.


Assuntos
Acetaminofen/toxicidade , Compostos de Anilina/toxicidade , Fertilidade/efeitos dos fármacos , Genitália Feminina/anormalidades , Folículo Ovariano/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Feminino , Genitália Feminina/embriologia , Idade Gestacional , Masculino , Camundongos Endogâmicos C57BL , Folículo Ovariano/embriologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
15.
Toxicol Sci ; 148(1): 288-98, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26259604

RESUMO

Industrial use of aniline is increasing worldwide with production estimated to surpass 5.6 million metric tons in 2016. Exposure to aniline occurs via air, diet, and water augmenting the risk of exposing a large number of individuals. Early observations suggest that aniline is metabolized to paracetamol/acetaminophen, likely explaining the omnipresence of low concentrations of paracetamol in European populations. This is of concern as recent studies implicate paracetamol as a disrupter of reproduction. Here, we show through steroidogenic profiling that exposure to aniline led to increased levels of the Δ4 steroids, suggesting that the activity of CYP21 was decreased. By contrast, paracetamol decreased levels of androgens likely through inhibition of CYP17A1 activity. We confirm that aniline in vivo is rapidly converted to paracetamol by the liver. Intrauterine exposure to aniline and paracetamol in environmental and pharmaceutical relevant doses resulted in shortening of the anogenital distance in mice, a sensitive marker of fetal androgen levels that in humans is associated with reproductive malformations and later life reproductive disorders. In conclusion, our results provide evidence for a scenario where aniline, through its conversion into antiandrogenic paracetamol, impairs male reproductive development.


Assuntos
Acetaminofen/toxicidade , Compostos de Anilina/toxicidade , Carcinógenos Ambientais/toxicidade , Disruptores Endócrinos/toxicidade , Infertilidade Masculina/induzido quimicamente , Acetaminofen/metabolismo , Compostos de Anilina/metabolismo , Animais , Biotransformação , Carcinógenos Ambientais/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Disruptores Endócrinos/metabolismo , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Humanos , Técnicas In Vitro , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Fígado/enzimologia , Fígado/metabolismo , Masculino , Troca Materno-Fetal , Camundongos Endogâmicos C57BL , Gravidez , Progesterona/agonistas , Progesterona/metabolismo , Desenvolvimento Sexual/efeitos dos fármacos , Testosterona/antagonistas & inibidores , Testosterona/metabolismo , Toxicocinética
16.
PLoS One ; 10(5): e0125495, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942314

RESUMO

The intestinal microbiota is vital for shaping the local intestinal environment as well as host immunity and metabolism. At the same time, epidemiological and experimental evidence suggest an important role for parasitic worm infections in maintaining the inflammatory and regulatory balance of the immune system. In line with this, the prevalence of persistent worm infections is inversely correlated with the incidence of immune-associated diseases, prompting the use of controlled parasite infections for therapeutic purposes. Despite this, the impact of parasite infection on the intestinal microbiota, as well as potential downstream effects on the immune system, remain largely unknown. We have assessed the influence of chronic infection with the large-intestinal nematode Trichuris muris, a close relative of the human pathogen Trichuris trichiura, on the composition of the murine intestinal microbiota by 16S ribosomal-RNA gene-based sequencing. Our results demonstrate that persistent T. muris infection dramatically affects the large-intestinal microbiota, most notably with a drop in the diversity of bacterial communities, as well as a marked increase in the relative abundance of the Lactobacillus genus. In parallel, chronic T. muris infection resulted in a significant shift in the balance between regulatory and inflammatory T cells in the intestinal adaptive immune system, in favour of inflammatory cells. Together, these data demonstrate that chronic parasite infection strongly influences the intestinal microbiota and the adaptive immune system. Our results illustrate the complex interactions between these factors in the intestinal tract, and contribute to furthering the understanding of this interplay, which is of crucial importance considering that 500 million people globally are suffering from these infections and their potential use for therapeutic purposes.


Assuntos
Biodiversidade , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/parasitologia , Lactobacillus , Tricuríase/parasitologia , Trichuris , Animais , Doença Crônica , Mucosa Intestinal/imunologia , Lactobacillus/imunologia , Masculino , Camundongos , Modelos Animais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores de Tempo
17.
Am J Physiol Cell Physiol ; 305(1): C48-60, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23485709

RESUMO

Pathophysiological conditions challenge cell volume homeostasis and perturb cell volume regulatory mechanisms leading to alterations of cell metabolism, active transepithelial transport, cell migration, and death. We report that inhibition of the 5-lipoxygenase (5-LO) with AA861 or ETH 615-139, the cysteinyl leukotriene 1 receptor (CysLT1) with the antiasthmatic drug Zafirlukast, or the volume-sensitive organic anion channel (VSOAC) with DIDS blocks the release of organic osmolytes (taurine, meAIB) and the concomitant cell volume restoration following hypoosmotic swelling of human type II-like lung epithelial cells (A549). Reactive oxygen species (ROS) are produced in A549 cells upon hypotonic cell swelling by a diphenylene iodonium-sensitive NADPH oxidase. The swelling-induced taurine release is suppressed by ROS scavenging (butylated hydroxytoluene, N-acetyl cysteine) and potentiated by H2O2. Ca²âº mobilization with ionomycin or ATP stimulates the swelling-induced taurine release whereas calmodulin inhibition (W7) inhibits the release. Chelation of the extracellular Ca²âº (EGTA) had no effect on swelling-induced taurine release but prevented ATP-induced stimulation. H2O2, ATP, and ionomycin were unable to stimulate the taurine release in the presence of AA861 or Zafirlukast, placing 5-LO and CysLT1 as essential elements in the swelling-induced activation of VSOAC with ROS and Ca²âº as potent modulators. Inhibition of tyrosine kinases (genistein, cucurbitacin) reduces volume-sensitive taurine release, adding tyrosine kinases (Janus kinase) as regulators of VSOAC activity. Caspase-3 activity during hypoxia is unaffected by inhibition of 5-LO/CysLT1 but reduced when swelling-induced taurine loss via VSOAC is prevented by DIDS excess extracellular taurine, indicating a beneficial role of taurine under hypoxia.


Assuntos
Aminoácidos/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Ácido 4,4'-Di-Isotiocianoestilbeno-2,2'-Dissulfônico/farmacologia , Adenocarcinoma , Trifosfato de Adenosina , Antiasmáticos/farmacologia , Araquidonato 5-Lipoxigenase/genética , Cálcio , Linhagem Celular Tumoral , Tamanho Celular/efeitos dos fármacos , Sobrevivência Celular , Relação Dose-Resposta a Droga , Eletrólitos , Regulação Enzimológica da Expressão Gênica , Humanos , Indóis , Antagonistas de Leucotrienos/farmacologia , Inibidores de Lipoxigenase/farmacologia , Neoplasias Pulmonares , Concentração Osmolar , Pressão Osmótica/fisiologia , Fenilcarbamatos , Espécies Reativas de Oxigênio/metabolismo , Sulfonamidas , Taurina/metabolismo , Compostos de Tosil/farmacologia , Água/metabolismo
18.
Cell Physiol Biochem ; 26(6): 809-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21220912

RESUMO

Platinum compounds are used in the treatment of cancer. We demonstrate that cisplatin-induced (10 µM) apoptosis (caspase-3 activity) is pronounced within 18 hours in non-adherent Ehrlich ascites tumour cells (EATC), whereas there is no increase in caspase-3 activity in the adherent Ehrlich Lettré ascites tumour cells (ELA). Loss of KCl and cell shrinkage are hallmarks in apoptosis and has been shown in EATC. However, we find no reduction in cell volume and only a minor loss of K(+) which is accompanied by net uptake of Na(+) following 18 hours cisplatin exposure in ELA. Glutathione and taurine have previously been demonstrated to protect cells from apoptosis. We find, however, that increase or decrease in the cellular content of glutathione and taurine has no effect on cisplatin-induced cell death in EATC and ELA. Nevertheless, knock-down of the taurine transporter TauT leads to a significant increase in apoptosis in ELA following cisplatin exposure. We find that cytosolic accumulation of cisplatin is similar in EATC and ELA. However, the nuclear accumulation and DNA-binding of cisplatin is significant lower in ELA compared to EATC. We suggest three putative reasons for the observed cisplatin insensitivity in the adherent tumor cells (ELA) compared to the non-adherent tumor cells (EATC): less nuclear cisplatin accumulation, increased TauT activity, and decreased anion and water loss.


Assuntos
Antineoplásicos/toxicidade , Apoptose , Cisplatino/toxicidade , Animais , Caspase 3/metabolismo , Tamanho Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Técnicas de Silenciamento de Genes , Glutationa/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , MicroRNAs/metabolismo , Potássio/metabolismo , Taurina/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...