Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1817(8): 1220-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22306529

RESUMO

The multilamellar organization of freshly isolated spinach and pea chloroplast thylakoid membranes was studied using small-angle neutron scattering. A broad peak at ~0.02Å(-1) is ascribed to diffraction from domains of ordered, unappressed stroma lamellae, revealing a repeat distance of 294ű7Å in spinach and 345ű11Å in pea. The peak position and hence the repeat distance of stroma lamellae is strongly dependent on the osmolarity and the ionic strength of the suspension medium, as demonstrated by varying the sorbitol and the Mg(++)-concentration in the sample. For pea thylakoid membranes, we show that the repeat distance decreases when illuminating the sample with white light, in accordance with our earlier results on spinach, also regarding the observation that addition of an uncoupler prohibits the light-induced structural changes, a strong indication that these changes are driven by the transmembrane proton gradient. We show that the magnitude of the shrinkage is strongly dependent on light intensity and that the repeat distance characteristic of the dark state after illumination is different from the initial dark state. Prolonged strong illumination leads to irreversible changes and swelling as reflected in increased repeat distances. The observed reorganizations are discussed within the frames of the current structural models of the granum-stroma thylakoid membrane assembly and the regulatory mechanisms in response to variations in the environmental conditions in vivo. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.


Assuntos
Nêutrons , Espalhamento a Baixo Ângulo , Tilacoides/ultraestrutura , Luz , Magnésio/farmacologia , Pressão Osmótica , Pisum sativum/ultraestrutura , Spinacia oleracea/ultraestrutura
2.
Biochem J ; 436(2): 225-30, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21473741

RESUMO

In the present study, we determined characteristic repeat distances of the photosynthetic membranes in living cyanobacterial and eukaryotic algal cells, and in intact thylakoid membranes isolated from higher plants with time-resolved small-angle neutron scattering. This non-invasive technique reveals light-induced reversible reorganizations in the seconds-to-minutes time scale, which appear to be associated with functional changes in vivo.


Assuntos
Difração de Nêutrons/métodos , Nêutrons , Fotossíntese/fisiologia , Espalhamento a Baixo Ângulo , Tilacoides/fisiologia , Synechococcus/citologia , Synechococcus/fisiologia , Synechococcus/ultraestrutura , Tilacoides/química , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA