Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychoneuroendocrinology ; 165: 107040, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38636355

RESUMO

Recent research shows prominent effects of pregnancy and the parenthood transition on structural brain characteristics in humans. Here, we present a comprehensive study of how parental status and number of children born/fathered links to markers of brain and cellular ageing in 36,323 UK Biobank participants (age range 44.57-82.06 years; 52% female). To assess global effects of parenting on the brain, we trained a 3D convolutional neural network on T1-weighted magnetic resonance images, and estimated brain age in a held-out test set. To investigate regional specificity, we extracted cortical and subcortical volumes using FreeSurfer, and ran hierarchical clustering to group regional volumes based on covariance. Leukocyte telomere length (LTL) derived from DNA was used as a marker of cellular ageing. We employed linear regression models to assess relationships between number of children, brain age, regional brain volumes, and LTL, and included interaction terms to probe sex differences in associations. Lastly, we used the brain measures and LTL as features in binary classification models, to determine if markers of brain and cellular ageing could predict parental status. The results showed associations between a greater number of children born/fathered and younger brain age in both females and males, with stronger effects observed in females. Volume-based analyses showed maternal effects in striatal and limbic regions, which were not evident in fathers. We found no evidence for associations between number of children and LTL. Classification of parental status showed an Area under the ROC Curve (AUC) of 0.57 for the brain age model, while the models using regional brain volumes and LTL as predictors showed AUCs of 0.52. Our findings align with previous population-based studies of middle- and older-aged parents, revealing subtle but significant associations between parental experience and neuroimaging-based surrogate markers of brain health. The findings further corroborate results from longitudinal cohort studies following parents across pregnancy and postpartum, potentially indicating that the parenthood transition is associated with long-term influences on brain health.

2.
Dev Cogn Neurosci ; 62: 101271, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37348146

RESUMO

The interplay between functional brain network maturation and psychopathology during development remains elusive. To establish the structure of psychopathology and its neurobiological mechanisms, mapping of both shared and unique functional connectivity patterns across developmental clinical populations is needed. We investigated shared associations between resting-state functional connectivity and psychopathology in children and adolescents aged 5-21 (n = 1689). Specifically, we used partial least squares (PLS) to identify latent variables (LV) between connectivity and both symptom scores and diagnostic information. We also investigated associations between connectivity and each diagnosis specifically, controlling for other diagnosis categories. PLS identified five significant LVs between connectivity and symptoms, mapping onto the psychopathology hierarchy. The first LV resembled a general psychopathology factor, followed by dimensions of internalising- externalising, neurodevelopment, somatic complaints, and thought problems. Another PLS with diagnostic data revealed one significant LV, resembling a cross-diagnostic case-control pattern. The diagnosis-specific PLS identified a unique connectivity pattern for autism spectrum disorder (ASD). All LVs were associated with distinct patterns of functional connectivity. These dimensions largely replicated in an independent sample (n = 420) from the same dataset, as well as to an independent cohort (n = 3504). This suggests that covariance in developmental functional brain networks supports transdiagnostic dimensions of psychopathology.


Assuntos
Transtorno do Espectro Autista , Mapeamento Encefálico , Adolescente , Criança , Humanos , Encéfalo , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Psicopatologia , Pré-Escolar , Adulto Jovem
3.
Dev Cogn Neurosci ; 60: 101220, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36841180

RESUMO

The temporal characteristics of adolescent neurodevelopment are shaped by a complex interplay of genetic, biological, and environmental factors. Using a large longitudinal dataset of children aged 9-13 from the Adolescent Brain Cognitive Development (ABCD) study we tested the associations between pubertal status and brain maturation. Brain maturation was assessed using brain age prediction based on convolutional neural networks and minimally processed T1-weighted structural MRI data. Brain age prediction provided highly accurate and reliable estimates of individual age, with an overall mean absolute error of 0.7 and 1.4 years at the two timepoints respectively, and an intraclass correlation of 0.65. Linear mixed effects (LME) models accounting for age and sex showed that on average, a one unit increase in pubertal maturational level was associated with a 2.22 months higher brain age across time points (ß = 0.10, p < .001). Moreover, annualized change in pubertal development was weakly related to the rate of change in brain age (ß = .047, p = 0.04). These results demonstrate a link between sexual development and brain maturation in early adolescence, and provides a basis for further investigations of the complex sociobiological impacts of puberty on life outcomes.


Assuntos
Encéfalo , Puberdade , Criança , Humanos , Adolescente , Lactente , Estudos Longitudinais , Maturidade Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...