Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6119, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480827

RESUMO

Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the stratum corneum of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.


Assuntos
Exposição à Radiação , Radiometria , Humanos , Camundongos , Animais , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Fourier , Radiometria/métodos , Proteínas , Radiação Ionizante , Exposição à Radiação/análise , Doses de Radiação
2.
Commun Biol ; 3(1): 684, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208883

RESUMO

Non-invasive and label-free spectral microscopy (spectromicroscopy) techniques can provide quantitative biochemical information complementary to genomic sequencing, transcriptomic profiling, and proteomic analyses. However, spectromicroscopy techniques generate high-dimensional data; acquisition of a single spectral image can range from tens of minutes to hours, depending on the desired spatial resolution and the image size. This substantially limits the timescales of observable transient biological processes. To address this challenge and move spectromicroscopy towards efficient real-time spatiochemical imaging, we developed a grid-less autonomous adaptive sampling method. Our method substantially decreases image acquisition time while increasing sampling density in regions of steeper physico-chemical gradients. When implemented with scanning Fourier Transform infrared spectromicroscopy experiments, this grid-less adaptive sampling approach outperformed standard uniform grid sampling in a two-component chemical model system and in a complex biological sample, Caenorhabditis elegans. We quantitatively and qualitatively assess the efficiency of data acquisition using performance metrics and multivariate infrared spectral analysis, respectively.


Assuntos
Imageamento Hiperespectral/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Caenorhabditis elegans/metabolismo , Bases de Dados Factuais , Regulação da Expressão Gênica , Modelos Biológicos , Fatores de Tempo
3.
ISME J ; 14(6): 1547-1560, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32203118

RESUMO

Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation. An unusually high abundance of lysolipids attributed to CPR bacteria may represent an adaptation to membrane curvature stress induced by their small cell sizes. Our findings provide new insights into the carbon cycle in the deep subsurface and suggest the redistribution of lipids into putative symbionts within this community.


Assuntos
Dióxido de Carbono/metabolismo , Água Subterrânea/microbiologia , Archaea/genética , Processos Autotróficos , Bactérias/genética , Carbono/metabolismo , Ciclo do Carbono , Colorado , Ecossistema , Lipídeos/análise , Metagenoma , Filogenia
4.
Sci Rep ; 9(1): 15678, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31666554

RESUMO

The idea that original soft tissue structures and the native structural proteins comprising them can persist across geological time is controversial, in part because rigorous and testable mechanisms that can occur under natural conditions, resulting in such preservation, have not been well defined. Here, we evaluate two non-enzymatic structural protein crosslinking mechanisms, Fenton chemistry and glycation, for their possible contribution to the preservation of blood vessel structures recovered from the cortical bone of a Tyrannosaurus rex (USNM 555000 [formerly, MOR 555]). We demonstrate the endogeneity of the fossil vessel tissues, as well as the presence of type I collagen in the outermost vessel layers, using imaging, diffraction, spectroscopy, and immunohistochemistry. Then, we use data derived from synchrotron FTIR studies of the T. rex vessels to analyse their crosslink character, with comparison against two non-enzymatic Fenton chemistry- and glycation-treated extant chicken samples. We also provide supporting X-ray microprobe analyses of the chemical state of these fossil tissues to support our conclusion that non-enzymatic crosslinking pathways likely contributed to stabilizing, and thus preserving, these T. rex vessels. Finally, we propose that these stabilizing crosslinks could play a crucial role in the preservation of other microvascular tissues in skeletal elements from the Mesozoic.


Assuntos
Colágeno Tipo I/química , Dinossauros/metabolismo , Fósseis , Proteínas/química , Animais , Osso e Ossos/química , Osso e Ossos/metabolismo , Colágeno Tipo I/metabolismo , Humanos , Preservação Biológica , Proteínas/metabolismo
5.
Sci Rep ; 7(1): 4039, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642547

RESUMO

The human skin microbiome acts as an important barrier protecting our body from pathogens and other environmental influences. Recent investigations have provided evidence that Archaea are a constant but highly variable component of the human skin microbiome, yet factors that determine their abundance changes are unknown. Here, we tested the hypothesis that the abundance of archaea on human skin is influenced by human age and skin physiology by quantitative PCR of 51 different skin samples taken from human subjects of various age. Our results reveal that archaea are more abundant in human subjects either older than 60 years or younger than 12 years as compared to middle-aged human subjects. These results, together with results obtained from spectroscopy analysis, allowed us gain first insights into a potential link of lower sebum levels and lipid content and thus reduced skin moisture with an increase in archaeal signatures. Amplicon sequencing of selected samples revealed the prevalence of specific eury- and mainly thaumarchaeal taxa, represented by a core archaeome of the human skin.


Assuntos
Archaea/classificação , Archaea/genética , Microbiota , Fenômenos Fisiológicos da Pele , Pele/microbiologia , Fatores Etários , Biodiversidade , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Filogenia , RNA Ribossômico 16S , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Protein Pept Lett ; 23(3): 273-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26732243

RESUMO

A long-standing desire in biological and biomedical sciences is to be able to probe cellular chemistry as biological processes are happening inside living cells. Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectral microscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal distributions and relative abundances of biomolecules of a specimen by their characteristic vibrational modes. Despite great progress in recent years, SR-FTIR imaging of living biological systems remains challenging because of the demanding requirements on environmental control and strong infrared absorption of water. To meet this challenge, microfluidic devices have emerged as a method to control the water thickness while providing a hospitable environment to measure cellular processes and responses over many hours or days. This paper will provide an overview of microfluidic device development for SR-FTIR imaging of living biological systems, provide contrast between the various techniques including closed and open-channel designs, and discuss future directions of development within this area. Even as the fundamental science and technological demonstrations develop, other ongoing issues must be addressed; for example, choosing applications whose experimental requirements closely match device capabilities, and developing strategies to efficiently complete the cycle of development. These will require imagination, ingenuity and collaboration.


Assuntos
Células/química , Microfluídica/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Animais , Microfluídica/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Síncrotrons , Água/química
7.
Front Plant Sci ; 6: 628, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347754

RESUMO

The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

8.
Front Plant Sci ; 6: 518, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217368

RESUMO

In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO) from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

9.
Anal Chem ; 87(9): 4601-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25886198

RESUMO

Spatially resolved infrared spectroscopy is a label-free and nondestructive analytical technique that can provide spatiotemporal information on functional groups in biomolecules of a sample by their characteristic vibrational modes. One difficulty in performing long-term FT-IR measurements on live cells is the competition between the strong IR absorption from water and the need to supply nutrients and remove waste. In this proof of principle study, we developed an open-channel membrane device that allows long-term continuous IR measurement of live, adherent mammalian cells. Composed of a gold-coated porous membrane between a feeding channel and a viewing chamber, it allows cells to be maintained on the upper membrane surface in a thin layer of fluid while media is replenished from the feeding channel below. Using this device, we monitored the spatiotemporal chemical changes in living colonies of PC12 cells under nerve growth factor (NGF) stimulation for up to 7 days using both conventional globar and high-resolution synchrotron radiation-based IR sources. We identified the primary chemical change cells undergo is an increase in glycogen that may be associated with secretion of glycoprotein to protect the cells from evaporative stress at the air-liquid interface. Analyzing the spectral maps with multivariate methods of hierarchical cluster analysis (HCA) and principal component analysis (PCA), we found that the cells at the boundary of the colony and in a localized region in the center of the colony tend to produce more glycogen and glycoprotein than cells located elsewhere in the colony and that the degree of spatial heterogeneity decreases with time. This method provides a promising approach for long-term live-cell spectromicroscopy on mammalian cell systems.


Assuntos
Técnicas Analíticas Microfluídicas , Animais , Adesão Celular , Análise por Conglomerados , Células PC12 , Análise de Componente Principal , Ratos , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Nat Commun ; 6: 6372, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25721682

RESUMO

Bacteria from phyla lacking cultivated representatives are widespread in natural systems and some have very small genomes. Here we test the hypothesis that these cells are small and thus might be enriched by filtration for coupled genomic and ultrastructural characterization. Metagenomic analysis of groundwater that passed through a ~0.2-µm filter reveals a wide diversity of bacteria from the WWE3, OP11 and OD1 candidate phyla. Cryogenic transmission electron microscopy demonstrates that, despite morphological variation, cells consistently have small cell size (0.009±0.002 µm(3)). Ultrastructural features potentially related to cell and genome size minimization include tightly packed spirals inferred to be DNA, few densely packed ribosomes and a variety of pili-like structures that might enable inter-organism interactions that compensate for biosynthetic capacities inferred to be missing from genomic data. The results suggest that extremely small cell size is associated with these relatively common, yet little known organisms.


Assuntos
Bactérias/genética , Bactérias/ultraestrutura , Água Subterrânea/microbiologia , Microbiota/genética , Microbiologia da Água , Sequência de Bases , Microscopia Crioeletrônica , Filtração , Tamanho do Genoma/genética , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
11.
Anal Chem ; 87(5): 2631-8, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25622206

RESUMO

A new experimental setup for spatially resolved ambient infrared laser ablation-mass spectrometry (AIRLAB-MS) that uses an infrared microscope with an infinity-corrected reflective objective and a continuous flow solvent probe coupled to a Fourier transform ion cyclotron resonance mass spectrometer is described. The efficiency of material transfer from the sample to the electrospray ionization emitter was determined using glycerol/methanol droplets containing 1 mM nicotine and is ∼50%. This transfer efficiency is significantly higher than values reported for similar techniques. Laser desorption does not induce fragmentation of biomolecules in droplets containing bradykinin, leucine enkephalin and myoglobin, but loss of the heme group from myoglobin occurs as a result of the denaturing solution used. An application of AIRLAB-MS to biological materials is demonstrated for tobacco leaves. Chemical components are identified from the spatially resolved mass spectra of the ablated plant material, including nicotine and uridine. The reproducibility of measurements made using AIRLAB-MS on plant material was demonstrated by the ablation of six closely spaced areas (within 2 × 2 mm) on a young tobacco leaf, and the results indicate a standard deviation of <10% in the uridine signal obtained for each area. The spatial distribution of nicotine was measured for selected leaf areas and variation in the relative nicotine levels (15-100%) was observed. Comparative analysis of the nicotine distribution was demonstrated for two tobacco plant varieties, a genetically modified plant and its corresponding wild-type, indicating generally higher nicotine levels in the mutant.


Assuntos
Poluentes Atmosféricos/análise , Terapia a Laser/métodos , Sondas Moleculares/química , Nicotina/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Uridina/análise , Folhas de Planta/química , Plantas Geneticamente Modificadas/química , Solventes/química , Nicotiana/química
12.
PLoS One ; 9(6): e99801, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971452

RESUMO

Earth harbors an enormous portion of subsurface microbial life, whose microbiome flux across geographical locations remains mainly unexplored due to difficult access to samples. Here, we investigated the microbiome relatedness of subsurface biofilms of two sulfidic springs in southeast Germany that have similar physical and chemical parameters and are fed by one deep groundwater current. Due to their unique hydrogeological setting these springs provide accessible windows to subsurface biofilms dominated by the same uncultivated archaeal species, called SM1 Euryarchaeon. Comparative analysis of infrared imaging spectra demonstrated great variations in archaeal membrane composition between biofilms of the two springs, suggesting different SM1 euryarchaeal strains of the same species at both aquifer outlets. This strain variation was supported by ultrastructural and metagenomic analyses of the archaeal biofilms, which included intergenic spacer region sequencing of the rRNA gene operon. At 16S rRNA gene level, PhyloChip G3 DNA microarray detected similar biofilm communities for archaea, but site-specific communities for bacteria. Both biofilms showed an enrichment of different deltaproteobacterial operational taxonomic units, whose families were, however, congruent as were their lipid spectra. Consequently, the function of the major proportion of the bacteriome appeared to be conserved across the geographic locations studied, which was confirmed by dsrB-directed quantitative PCR. Consequently, microbiome differences of these subsurface biofilms exist at subtle nuances for archaea (strain level variation) and at higher taxonomic levels for predominant bacteria without a substantial perturbation in bacteriome function. The results of this communication provide deep insight into the dynamics of subsurface microbial life and warrant its future investigation with regard to metabolic and genomic analyses.


Assuntos
Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biofilmes , Fontes Termais/microbiologia , Microbiota , Archaea/genética , Archaea/fisiologia , Archaea/ultraestrutura , Bactérias/genética , Bactérias/ultraestrutura , Fenômenos Fisiológicos Bacterianos
13.
ISME J ; 7(3): 635-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23178669

RESUMO

Archaea are usually minor components of a microbial community and dominated by a large and diverse bacterial population. In contrast, the SM1 Euryarchaeon dominates a sulfidic aquifer by forming subsurface biofilms that contain a very minor bacterial fraction (5%). These unique biofilms are delivered in high biomass to the spring outflow that provides an outstanding window to the subsurface. Despite previous attempts to understand its natural role, the metabolic capacities of the SM1 Euryarchaeon remain mysterious to date. In this study, we focused on the minor bacterial fraction in order to obtain insights into the ecological function of the biofilm. We link phylogenetic diversity information with the spatial distribution of chemical and metabolic compounds by combining three different state-of-the-art methods: PhyloChip G3 DNA microarray technology, fluorescence in situ hybridization (FISH) and synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy. The results of PhyloChip and FISH technologies provide evidence for selective enrichment of sulfate-reducing bacteria, which was confirmed by the detection of bacterial dissimilatory sulfite reductase subunit B (dsrB) genes via quantitative PCR and sequence-based analyses. We further established a differentiation of archaeal and bacterial cells by SR-FTIR based on typical lipid and carbohydrate signatures, which demonstrated a co-localization of organic sulfate, carbonated mineral and bacterial signatures in the biofilm. All these results strongly indicate an involvement of the SM1 euryarchaeal biofilm in the global cycles of sulfur and carbon and support the hypothesis that sulfidic springs are important habitats for Earth's energy cycles. Moreover, these investigations of a bacterial minority in an Archaea-dominated environment are a remarkable example of the great power of combining highly sensitive microarrays with label-free infrared imaging.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biodiversidade , Biofilmes , Nascentes Naturais/microbiologia , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Bacteriano/genética , Sulfito de Hidrogênio Redutase/genética , Hibridização in Situ Fluorescente , Nascentes Naturais/química , Filogenia , RNA Ribossômico 16S/genética , Espectroscopia de Infravermelho com Transformada de Fourier
14.
ISME J ; 6(9): 1715-27, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22717885

RESUMO

The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.


Assuntos
Hidrocarbonetos/metabolismo , Metagenoma , Oceanospirillaceae/genética , Oceanospirillaceae/metabolismo , Poluição por Petróleo , Água do Mar/microbiologia , Análise de Célula Única , Transcriptoma , Archaea/genética , Archaea/fisiologia , Bactérias/genética , Biodiversidade , Golfo do México , RNA Ribossômico 16S
15.
Anal Chem ; 84(9): 4118-25, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22468902

RESUMO

Protein phosphorylation is a post-translational modification that is essential for the regulation of many important cellular activities, including proliferation and differentiation. Current techniques for detecting protein phosphorylation in single cells often involve the use of fluorescence markers, such as antibodies or genetically expressed proteins. In contrast, infrared spectroscopy is a label-free and noninvasive analytical technique that can monitor the intrinsic vibrational signatures of chemical bonds. Here, we provide direct evidence that protein phosphorylation in individual living mammalian cells can be measured with synchrotron radiation-based Fourier transform-infrared (SR-FT-IR) spectromicroscopy. We show that PC12 cells stimulated with nerve growth factor (NGF) exhibit statistically significant temporal variations in specific spectral features, correlating with changes in protein phosphorylation levels and the subsequent development of neuron-like phenotypes in the cells. The spectral phosphorylation markers were confirmed by bimodal (FT-IR/fluorescence) imaging of fluorescently marked PC12 cells with sustained protein phosphorylation activity. Our results open up new possibilities for the label-free real-time monitoring of protein phosphorylation inside cells. Furthermore, the multimolecule sensitivity of this technique will be useful for unraveling the associated molecular changes during cellular signaling and response processes.


Assuntos
Neurônios/citologia , Proteínas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Animais , Diferenciação Celular , Sobrevivência Celular , Fatores de Crescimento Neural/metabolismo , Neurônios/metabolismo , Células PC12 , Fosforilação , Ratos , Sensibilidade e Especificidade , Síncrotrons/instrumentação
16.
Anal Chem ; 82(21): 8757-65, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20839782

RESUMO

Advanced analytical capabilities of synchrotron IR spectromicroscopy meet the demands of modern biological research for studying molecular reactions in individual living cells. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).


Assuntos
Microscopia/instrumentação , Espectrofotometria Infravermelho/instrumentação , Síncrotrons/instrumentação , Bactérias/química , Bactérias/citologia , Chlamydomonas/química , Chlamydomonas/citologia , Desenho de Equipamento , Ligação de Hidrogênio , Micrasterias/química , Micrasterias/citologia , Técnicas Analíticas Microfluídicas/instrumentação , Água/análise
17.
Science ; 330(6001): 204-8, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20736401

RESUMO

The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown owing to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous γ-Proteobacteria that are closely related to known petroleum degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrated faster-than-expected hydrocarbon biodegradation rates at 5°C. Based on these results, the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown.


Assuntos
Biodegradação Ambiental , Poluição Ambiental , Gammaproteobacteria/metabolismo , Hidrocarbonetos/metabolismo , Oceanospirillaceae/metabolismo , Petróleo/metabolismo , Água do Mar/microbiologia , Biomassa , Contagem de Colônia Microbiana , Ácidos Graxos/análise , Gammaproteobacteria/classificação , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/isolamento & purificação , Genes Bacterianos , Genes de RNAr , Dados de Sequência Molecular , Oceanospirillaceae/classificação , Oceanospirillaceae/genética , Oceanospirillaceae/isolamento & purificação , Fosfolipídeos/análise , Filogenia
18.
Plant Physiol ; 154(1): 121-33, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20592039

RESUMO

The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production.


Assuntos
Asteraceae/anatomia & histologia , Parede Celular/metabolismo , Imageamento Tridimensional/métodos , Feixe Vascular de Plantas/anatomia & histologia , Asteraceae/citologia , Asteraceae/ultraestrutura , Parede Celular/ultraestrutura , Células Cultivadas , Celulose/metabolismo , Celulossomas/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Microfibrilas/metabolismo , Microscopia de Força Atômica , Modelos Biológicos , Oxirredução , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Coloração e Rotulagem
19.
Langmuir ; 26(7): 4661-7, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19921822

RESUMO

We developed an ultrafast microfluidic approach to self-assemble microparticles in three dimensions by taking advantage of simple photolithography and capillary action of microparticle-dispersed suspensions. The theoretical principles of high-speed assembly have been explained, and the experimental verifications of the assembly of various sizes of silica microspheres and silica gel microspheres within thin and long open microchannels by using this approach have been demonstrated. We anticipate that the presented technique will be widely used in the semiconductor and Bio-MEMS (microelectromechanical systems) fields because it offers a fast way to control 3D microscale particle assemblies and also has superb compatibility with photolithography, which can lead to an easy integration of particle assembly with existing CMOS (complementary metal oxide-semiconductor) and MEMS fabrication processes.


Assuntos
Técnicas Analíticas Microfluídicas/métodos , Microesferas , Microscopia Eletrônica de Varredura , Modelos Teóricos , Tamanho da Partícula , Dióxido de Silício/química
20.
Anal Chem ; 81(20): 8564-70, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19775125

RESUMO

Real-time chemical imaging of bacterial activities can facilitate a comprehensive understanding of the dynamics of biofilm structures and functions. Synchrotron-radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy can yield high spatial resolution and label-free vibrational signatures of chemical bonds in biomolecules, but the abundance of water in biofilms has hindered SR-FTIR's sensitivity in investigating bacterial activity. We developed a simple open-channel microfluidic system that can circumvent the water-absorption barrier for chemical imaging of the developmental dynamics of bacterial biofilms with a spatial resolution of several micrometers. This system maintains a 10 microm thick laminar-flow-through biofilm system that minimizes both the imaging volume in liquid and the signal interference from geometry-induced fringing. Here we demonstrate the ability of the open-channel microfluidic platform to maintain the functionality of living cells while enabling high-quality SR-FTIR measurements. We include several applications that show how microbes in biofilms adapt to their immediate environments. The ability to directly monitor and map bacterial changes in biofilms can yield significant insight into a wide range of microbial systems, especially when coupled to more sophisticated microfluidic platforms.


Assuntos
Bactérias/metabolismo , Biofilmes , Técnicas Analíticas Microfluídicas , Imagem Molecular/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier , Síncrotrons , Absorção , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Aderência Bacteriana , DNA Bacteriano/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Glicocálix/metabolismo , Mitomicina/metabolismo , Mitomicina/farmacologia , Fatores de Tempo , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...