Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38730706

RESUMO

Medulloblastomas comprise a molecularly diverse set of malignant pediatric brain tumors in which patients are stratified according to different prognostic risk groups that span from very good to very poor. Metastasis at diagnosis is most often a marker of poor prognosis and the relapse incidence is higher in these children. Medulloblastoma relapse is almost always fatal and recurring cells have, apart from resistance to standard of care, acquired genetic and epigenetic changes that correlate with an increased dormancy state, cell state reprogramming and immune escape. Here, we review means to carefully study metastasis and relapse in preclinical models, in light of recently described molecular subgroups. We will exemplify how therapy resistance develops at the cellular level, in a specific niche or from therapy-induced secondary mutations. We further describe underlying molecular mechanisms on how tumors acquire the ability to promote leptomeningeal dissemination and discuss how they can establish therapy-resistant cell clones. Finally, we describe some of the ongoing clinical trials of high-risk medulloblastoma and suggest or discuss more individualized treatments that could be of benefit to specific subgroups.

2.
Chemistry ; 29(51): e202300864, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37332083

RESUMO

The study of a fluorescent indolin-3-one derivative is reported that, as opposed to its previously described congeners, selectively undergoes photoactivated ring-opening in apolar solvents. The excited state involved in this photoisomerization was partially deactivated by the formation of singlet oxygen. Cell studies revealed lipid droplet accumulation and efficient light-induced cytotoxicity.


Assuntos
Oxigênio Singlete , Solventes
3.
Nat Commun ; 14(1): 1221, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869047

RESUMO

Medulloblastoma, the most common malignant pediatric brain tumor, often harbors MYC amplifications. Compared to high-grade gliomas, MYC-amplified medulloblastomas often show increased photoreceptor activity and arise in the presence of a functional ARF/p53 suppressor pathway. Here, we generate an immunocompetent transgenic mouse model with regulatable MYC that develop clonal tumors that molecularly resemble photoreceptor-positive Group 3 medulloblastoma. Compared to MYCN-expressing brain tumors driven from the same promoter, pronounced ARF silencing is present in our MYC-expressing model and in human medulloblastoma. While partial Arf suppression causes increased malignancy in MYCN-expressing tumors, complete Arf depletion promotes photoreceptor-negative high-grade glioma formation. Computational models and clinical data further identify drugs targeting MYC-driven tumors with a suppressed but functional ARF pathway. We show that the HSP90 inhibitor, Onalespib, significantly targets MYC-driven but not MYCN-driven tumors in an ARF-dependent manner. The treatment increases cell death in synergy with cisplatin and demonstrates potential for targeting MYC-driven medulloblastoma.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Glioma , Meduloblastoma , Proteínas Proto-Oncogênicas c-myc , Animais , Criança , Humanos , Camundongos , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc
4.
Neuro Oncol ; 25(1): 97-107, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35738865

RESUMO

BACKGROUND: Malignant gliomas, the most common malignant brain tumors in adults, represent a heterogeneous group of diseases with poor prognosis. Retroviruses can cause permanent genetic alterations that modify genes close to the viral integration site. METHODS: Here we describe the use of a high-throughput pipeline coupled to the commonly used tissue-specific retroviral RCAS-TVA mouse tumor model system. Utilizing next-generation sequencing, we show that retroviral integration sites can be reproducibly detected in malignant stem cell lines generated from RCAS-PDGFB-driven glioma biopsies. RESULTS: A large fraction of common integration sites contained genes that have been dysregulated or misexpressed in glioma. Others overlapped with loci identified in previous glioma-related forward genetic screens, but several novel putative cancer-causing genes were also found. Integrating retroviral tagging and clinical data, Ppfibp1 was highlighted as a frequently tagged novel glioma-causing gene. Retroviral integrations into the locus resulted in Ppfibp1 upregulation, and Ppfibp1-tagged cells generated tumors with shorter latency on orthotopic transplantation. In human gliomas, increased PPFIBP1 expression was significantly linked to poor prognosis and PDGF treatment resistance. CONCLUSIONS: Altogether, the current study has demonstrated a novel approach to tagging glioma genes via forward genetics, validating previous results, and identifying PPFIBP1 as a putative oncogene in gliomagenesis.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/patologia , Estudos de Associação Genética , Glioma/patologia , Oncogenes , Proteínas Proto-Oncogênicas c-sis/genética
5.
Cancer Res ; 82(24): 4586-4603, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36219398

RESUMO

Relapse is the leading cause of death in patients with medulloblastoma, the most common malignant pediatric brain tumor. A better understanding of the mechanisms underlying recurrence could lead to more effective therapies for targeting tumor relapses. Here, we observed that SOX9, a transcription factor and stem cell/glial fate marker, is limited to rare, quiescent cells in high-risk medulloblastoma with MYC amplification. In paired primary-recurrent patient samples, SOX9-positive cells accumulated in medulloblastoma relapses. SOX9 expression anti-correlated with MYC expression in murine and human medulloblastoma cells. However, SOX9-positive cells were plastic and could give rise to a MYC high state. To follow relapse at the single-cell level, an inducible dual Tet model of medulloblastoma was developed, in which MYC expression was redirected in vivo from treatment-sensitive bulk cells to dormant SOX9-positive cells using doxycycline treatment. SOX9 was essential for relapse initiation and depended on suppression of MYC activity to promote therapy resistance, epithelial-mesenchymal transition, and immune escape. p53 and DNA repair pathways were downregulated in recurrent tumors, whereas MGMT was upregulated. Recurrent tumor cells were found to be sensitive to treatment with an MGMT inhibitor and doxorubicin. These findings suggest that recurrence-specific targeting coupled with DNA repair inhibition comprises a potential therapeutic strategy in patients affected by medulloblastoma relapse. SIGNIFICANCE: SOX9 facilitates therapy escape and recurrence in medulloblastoma via temporal inhibition of MYC/MYCN genes, revealing a strategy to specifically target SOX9-positive cells to prevent tumor relapse.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Neoplasias Cerebelares/patologia , Meduloblastoma/patologia , Recidiva Local de Neoplasia/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fatores de Transcrição/metabolismo
6.
RSC Adv ; 12(23): 14544-14550, 2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35702197

RESUMO

In this work, a series of fluorescent 2,1,3-benzothiadiazole derivatives with various N-substituents in the 4-position was synthesized and photophysically characterized in various solvents. Three compounds emerged as excellent fluorescent probes for imaging lipid droplets in cancer cells. A correlation between their high lipophilicity and lipid droplet specificity could be found, with log P ≥ 4 being characteristic for lipid droplet accumulation.

7.
RSC Adv ; 11(39): 23960-23967, 2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35479010

RESUMO

We present an extensive photophysical study of a series of fluorescent indolylbenzothiadiazole derivatives and their ability to specifically image lipid droplets in astrocytes and glioblastoma cells. All compounds in the series displayed positive solvatochromism together with large Stokes shifts, and π-extended derivatives exhibited elevated brightness. It was shown that the fluorescence properties were highly tunable by varying the electronic character or size of the N-substituent on the indole motif. Three compounds proved capable as probes for detecting small quantities of lipid deposits in healthy and cancerous brain cells. In addition, all twelve compounds in the series were predicted to cross the blood-brain barrier, which raises the prospect for future in vivo studies for exploring the role of lipid droplets in the central nervous system.

8.
Cell Stem Cell ; 25(6): 855-870.e11, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31786016

RESUMO

Medulloblastoma (MB), the most frequent malignant childhood brain tumor, can arise from cellular malfunctions during hindbrain development. Here we generate humanized models for Sonic Hedgehog (SHH)-subgroup MB via MYCN overexpression in primary human hindbrain-derived neuroepithelial stem (hbNES) cells or iPSC-derived NES cells, which display a range of aggressive phenotypes upon xenografting. iPSC-derived NES tumors develop quickly with leptomeningeal dissemination, whereas hbNES-derived cells exhibit delayed tumor formation with less dissemination. Methylation and expression profiling show that tumors from both origins recapitulate hallmarks of infant SHH MB and reveal that mTOR activation, as a result of increased Oct4, promotes aggressiveness of human SHH tumors. Targeting mTOR decreases cell viability and prolongs survival, showing the utility of these varied models for dissecting mechanisms mediating tumor aggression and demonstrating the value of humanized models for a better understanding of pediatric cancers.


Assuntos
Meduloblastoma/metabolismo , Meduloblastoma/patologia , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Linhagem Celular , Proliferação de Células/genética , Proliferação de Células/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Imuno-Histoquímica , Meduloblastoma/genética , Camundongos , Fator 3 de Transcrição de Octâmero/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Serina-Treonina Quinases TOR/genética
9.
Cancer Discov ; 9(11): 1574-1589, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31434712

RESUMO

Glioblastomas (GBM) are lethal brain tumors where poor outcome is attributed to cellular heterogeneity, therapeutic resistance, and a highly infiltrative nature. These characteristics are preferentially linked to GBM cancer stem cells (GSC), but how GSCs maintain their stemness is incompletely understood and the subject of intense investigation. Here, we identify a novel signaling loop that induces and maintains GSCs consisting of an atypical metalloproteinase, ADAMDEC1, secreted by GSCs. ADAMDEC1 rapidly solubilizes FGF2 to stimulate FGFR1 expressed on GSCs. FGFR1 signaling induces upregulation of ZEB1 via ERK1/2 that regulates ADAMDEC1 expression through miR-203, creating a positive feedback loop. Genetic or pharmacologic targeting of components of this axis attenuates self-renewal and tumor growth. These findings reveal a new signaling axis for GSC maintenance and highlight ADAMDEC1 and FGFR1 as potential therapeutic targets in GBM. SIGNIFICANCE: Cancer stem cells (CSC) drive tumor growth in many cancers including GBM. We identified a novel sheddase, ADAMDEC1, which initiates an FGF autocrine loop to promote stemness in CSCs. This loop can be targeted to reduce GBM growth.This article is highlighted in the In This Issue feature, p. 1469.


Assuntos
Proteínas ADAM/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Animais , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Retroalimentação Fisiológica , Feminino , Fator 2 de Crescimento de Fibroblastos/metabolismo , Glioblastoma/genética , Humanos , MicroRNAs/genética , Transplante de Neoplasias , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
10.
Waste Manag ; 87: 428-440, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109543

RESUMO

The plastic carrier bag epitomises many of the features that have transformed plastics into a material that defines our contemporary modern culture. The versatility, durability, strength and low cost have made it into an indispensable companion for consumers. In parallel with plastic becoming an increasingly contested material, the plastic carrier bag has emerged as a controversial object in many jurisdictions. This paper explores where, how and to what extent public authorities in different cases across the globe regulate plastic carrier bags. The number of public policies on plastic carrier bags has more than tripled since 2010, and they are now found on all continents, ranging from the municipal to the intergovernmental level. They mainly come in the form of either bans or levies, with the former being predominant. There have been many examples of policies leading to reduced consumption of plastic carrier bags, however this paper also identifies key challenges, including resistance towards plastic carrier bag regulations, uncertainty in measuring the effects, and the undesired side-effects. Far from being a simple issue, public policies on plastic carrier bags highlight the complexity of governing plastics.


Assuntos
Plásticos , Política Pública , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...