Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
2.
Dermatol Surg ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722701

RESUMO

BACKGROUND: Treatment option decisions for low-risk squamous cell carcinoma in situ (SCCIS) are hampered by a paucity of management-type-specific outcomes data. OBJECTIVE: Describe SCCIS tumor outcomes managed by watchful waiting and risk factors associated with poor cancer outcomes. MATERIALS AND METHODS: Retrospective cohort study. Setting: Single academic hospital in a rural setting. Patients: Adults with SCCIS diagnosed between January 01, 2014, and December 31, 2016. Main Outcomes and Measures: Hazard ratios (HRs) for local recurrence (LR), nodal metastases (NM), distant metastases (DM), and disease-specific death (DSD). RESULTS: A total of 411 consecutive SCCIS tumors that were considered clinically resolved at follow-up and managed with watchful waiting were included. Seventeen tumors recurred locally. No instances of NM, DM, or DSD were identified. Multivariate analysis found that solid-organ transplant recipient status conferred the highest risk of local recurrence [HR, 9.979 (95% CI, 2.249-39.69)]. Additional risk factors predicting LR include anatomic location on the vermilion lip or ear [HR, 9.744 (95% CI, 1.420-69.28)], anatomic location on the head and neck [HR, 6.687 (95% CI, 1.583-36.15)], and a biopsy with tumor extending to the deep edge [HR, 6.562 (95% CI, 1.367-39.04)]. CONCLUSION: Watchful waiting for SCCIS with a clinically resolved biopsy site has a local recurrence rate of 4%.

3.
Genome Res ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777608

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is linked to abnormal de-repression of the transcription activator DUX4. This effect is localized to a low percentage of cells, requiring single-cell analysis. However, single-cell/nucleus RNA-seq cannot fully capture the transcriptome of multinucleated large myotubes. To circumvent these issues, we use MERFISH (Multiplexed Error Robust Fluorescent In Situ Hybridization) spatial transcriptomics that allows profiling of RNA transcripts at a subcellular resolution. We simultaneously examined spatial distributions of 140 genes, including 24 direct DUX4 targets, in in vitro differentiated control, isogenic D4Z4 contraction mutant and FSHD patient myotubes and unfused mononuclear cells (MNCs), as well as the individual nuclei within them. We find myocyte nuclei segregate into 2 clusters defined by expression of DUX4 target genes, which is exclusively found in patient/mutant nuclei, while MNCs cluster based on developmental state. Patient/mutant myotubes are found in "FSHD-hi" and "FSHD-lo" states with the former signified by high DUX4 target expression and decreased muscle gene expression. Pseudotime analyses reveal a clear bifurcation of myoblast differentiation into control and FSHD-hi myotube branches, with variable numbers of DUX4 target expressing nuclei found in multinucleated FSHD-hi myotubes. Gene coexpression modules related to extracellular matrix and stress gene ontologies are significantly altered in patient/mutant myotubes compared to control. We also identify distinct subpathways within the DUX4 gene network that may differentially contribute to the disease transcriptomic phenotype. Taken together, our MERFISH-based study provides effective gene network profiling of multinucleated cells and identifies FSHD-induced transcriptomic alterations during myoblast differentiation.

4.
Front Neural Circuits ; 18: 1345692, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694272

RESUMO

Novel brain clearing methods revolutionize imaging by increasing visualization throughout the brain at high resolution. However, combining the standard tool of immunostaining targets of interest with clearing methods has lagged behind. We integrate whole-mount immunostaining with PEGASOS tissue clearing, referred to as iPEGASOS (immunostaining-compatible PEGASOS), to address the challenge of signal quenching during clearing processes. iPEGASOS effectively enhances molecular-genetically targeted fluorescent signals that are otherwise compromised during conventional clearing procedures. Additionally, we demonstrate the utility of iPEGASOS for visualizing neurochemical markers or viral labels to augment visualization that transgenic mouse lines cannot provide. Our study encompasses three distinct applications, each showcasing the versatility and efficacy of this approach. We employ whole-mount immunostaining to enhance molecular signals in transgenic reporter mouse lines to visualize the whole-brain spatial distribution of specific cellular populations. We also significantly improve the visualization of neural circuit connections by enhancing signals from viral tracers injected into the brain. Last, we show immunostaining without genetic markers to selectively label beta-amyloid deposits in a mouse model of Alzheimer's disease, facilitating the comprehensive whole-brain study of pathological features.


Assuntos
Doença de Alzheimer , Encéfalo , Camundongos Transgênicos , Animais , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Camundongos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Imuno-Histoquímica , Neuroimagem/métodos , Peptídeos beta-Amiloides/metabolismo , Camundongos Endogâmicos C57BL
5.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38503494

RESUMO

The subiculum (SUB), a hippocampal formation structure, is among the earliest brain regions impacted in Alzheimer's disease (AD). Toward a better understanding of AD circuit-based mechanisms, we mapped synaptic circuit inputs to dorsal SUB using monosynaptic rabies tracing in the 5xFAD mouse model by quantitatively comparing the circuit connectivity of SUB excitatory neurons in age-matched controls and 5xFAD mice at different ages for both sexes. Input-mapped brain regions include the hippocampal subregions (CA1, CA2, CA3), medial septum and diagonal band, retrosplenial cortex, SUB, postsubiculum (postSUB), visual cortex, auditory cortex, somatosensory cortex, entorhinal cortex, thalamus, perirhinal cortex (Prh), ectorhinal cortex, and temporal association cortex. We find sex- and age-dependent changes in connectivity strengths and patterns of SUB presynaptic inputs from hippocampal subregions and other brain regions in 5xFAD mice compared with control mice. Significant sex differences for SUB inputs are found in 5xFAD mice for CA1, CA2, CA3, postSUB, Prh, lateral entorhinal cortex, and medial entorhinal cortex: all of these areas are critical for learning and memory. Notably, we find significant changes at different ages for visual cortical inputs to SUB. While the visual function is not ordinarily considered defective in AD, these specific connectivity changes reflect that altered visual circuitry contributes to learning and memory deficits. Our work provides new insights into SUB-directed neural circuit mechanisms during AD progression and supports the idea that neural circuit disruptions are a prominent feature of AD.


Assuntos
Doença de Alzheimer , Raiva , Camundongos , Feminino , Masculino , Animais , Hipocampo , Córtex Entorrinal/fisiologia , Neurônios/fisiologia
6.
Mol Psychiatry ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355784

RESUMO

Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer's disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.

7.
eNeuro ; 11(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38164560

RESUMO

Our previous studies find that subcutaneously administered (s.c.) subanesthetic ketamine promotes sustained cortical disinhibition and plasticity in adult mouse binocular visual cortex (bV1). We hypothesized that intranasal delivery (i.n.) of subanesthetic ketamine may have similar actions. To test this, we delivered ketamine (10 mg/kg, i.n.) to adult mice and then recorded excitatory pyramidal neurons or PV+ interneurons in L2/3 of bV1 slices. In pyramidal neurons the baseline IPSC amplitudes from mice treated with ketamine are significantly weaker than those in control mice. Acute bath application of neuregulin-1 (NRG1) to cortical slices increases these IPSC amplitudes in mice treated with ketamine but not in controls. In PV+ interneurons, the baseline EPSC amplitudes from mice treated with ketamine are significantly weaker than those in control mice. Acute bath application of NRG1 to cortical slices increases these EPSC amplitudes in mice treated with ketamine but not in controls. We also found that mice treated with ketamine exhibit increased pCREB staining in L2/3 of bV1. Together, our results show that a single intranasal delivery of ketamine reduces PV+ interneuron excitation and reduces pyramidal neuron inhibition and that these effects are acutely reversed by NRG1. These results are significant as they show that intranasal delivery of ketamine induces cortical disinhibition, which has implications for the treatment of psychiatric, neurologic, and ophthalmic disorders.


Assuntos
Ketamina , Camundongos , Animais , Ketamina/farmacologia , Células Piramidais/fisiologia , Interneurônios , Plasticidade Neuronal/fisiologia , Parvalbuminas/farmacologia
9.
J Neuroinflammation ; 20(1): 265, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968737

RESUMO

BACKGROUND: Cerebral microhemorrhages (CMH) are associated with stroke, cognitive decline, and normal aging. Our previous study shows that the interaction between oxidatively stressed red blood cells (RBC) and cerebral endothelium may underlie CMH development. However, the real-time examination of altered RBC-brain endothelial interactions in vivo, and their relationship with clearance of stalled RBC, microglial responses, and CMH development, has not been reported. METHODS: RBC were oxidatively stressed using tert-butylhydroperoxide (t-BHP), fluorescently labeled and injected into adult Tie2-GFP mice. In vivo two-photon imaging and ex vivo confocal microscopy were used to evaluate the temporal profile of RBC-brain endothelial interactions associated with oxidatively stressed RBC. Their relationship with microglial activation and CMH was examined with post-mortem histology. RESULTS: Oxidatively stressed RBC stall significantly and rapidly in cerebral vessels in mice, accompanied by decreased blood flow velocity which recovers at 5 days. Post-mortem histology confirms significantly greater RBC-cerebral endothelial interactions and microglial activation at 24 h after t-BHP-treated RBC injection, which persist at 7 days. Furthermore, significant CMH develop in the absence of blood-brain barrier leakage after t-BHP-RBC injection. CONCLUSIONS: Our in vivo and ex vivo findings show the stalling and clearance of oxidatively stressed RBC in cerebral capillaries, highlighting the significance of microglial responses and altered RBC-brain endothelial interactions in CMH development. Our study provides novel mechanistic insight into CMH associated with pathological conditions with increased RBC-brain endothelial interactions.


Assuntos
Encéfalo , Microglia , Camundongos , Animais , Encéfalo/irrigação sanguínea , Eritrócitos , Hemorragia Cerebral , Endotélio
11.
Mol Psychiatry ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443194

RESUMO

Inhibitory interneurons are crucial to brain function and their dysfunction is implicated in neuropsychiatric conditions. Emerging evidence indicates that cholecystokinin (CCK)-expressing interneurons (CCK+) are highly heterogenous. We find that a large subset of parvalbumin-expressing (PV+) interneurons express CCK strongly; between 40 and 56% of PV+ interneurons in mouse hippocampal CA1 express CCK. Primate interneurons also exhibit substantial PV/CCK co-expression. Mouse PV+/CCK+ and PV+/CCK- cells show distinguishable electrophysiological and molecular characteristics. Analysis of single nuclei RNA-seq and ATAC-seq data shows that PV+/CCK+ cells are a subset of PV+ cells, not of synuclein gamma positive (SNCG+) cells, and that they strongly express oxidative phosphorylation (OXPHOS) genes. We find that mitochondrial complex I and IV-associated OXPHOS gene expression is strongly correlated with CCK expression in PV+ interneurons at both the transcriptomic and protein levels. Both PV+ interneurons and dysregulation of OXPHOS processes are implicated in neuropsychiatric conditions, including autism spectrum (ASD) disorder and schizophrenia (SCZ). Analysis of human brain samples from patients with these conditions shows alterations in OXPHOS gene expression. Together these data reveal important molecular characteristics of PV-CCK co-expressing interneurons and support their implication in neuropsychiatric conditions.

12.
J Comp Neurol ; 531(13): 1333-1347, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37312626

RESUMO

Hippocampal CA3 is traditionally conceptualized as a brain region within a unidirectional feedforward trisynaptic pathway that links major hippocampal subregions. Recent genomic and viral tracing studies indicate that the anatomical connectivity of CA3 and the trisynaptic pathway is more complex than initially expected and suggests that there may be cell type-specific input gradients throughout the three-dimensional hippocampal structure. In several recent studies using multiple viral tracing approaches, we describe subdivisions of the subiculum complex and ventral hippocampal CA1 that show significant back projections to CA1 and CA3 excitatory neurons. These novel connections form "noncanonical" circuits that run in the opposite direction relative to the well-characterized feedforward pathway. Diverse subtypes of GABAergic inhibitory neurons participate within the trisynaptic pathway. In the present study, we have applied monosynaptic retrograde viral tracing to examine noncanonical synaptic inputs from CA1 and subicular complex to the inhibitory neuron in hippocampal CA3. We quantitatively mapped synaptic inputs to CA3 inhibitory neurons to understand how they are connected within and beyond the hippocampus formation. Major brain regions that provide typical inputs to CA3 inhibitory neurons include the medial septum, the dentate gyrus, the entorhinal cortex, and CA3. Noncanonical inputs from ventral CA1 and subicular complex to CA3 inhibitory neurons follow a proximodistal topographic gradient with regard to CA3 subregions. We find novel noncanonical circuit connections between inhibitory CA3 neurons and ventral CA1, subiculum complex, and other brain regions. These results provide a new anatomical connectivity basis to further study the function of CA3 inhibitory neurons.


Assuntos
Córtex Entorrinal , Hipocampo , Vias Neurais/fisiologia , Neurônios GABAérgicos
13.
Front Neurosci ; 17: 1160353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274190

RESUMO

Lateral ventral neurons (LNvs) in the fly circadian neural circuit mediate behaviors other than clock resetting, including light-activated acute arousal. Converging sensory inputs often confer functional redundancy. The LNvs have three distinct light input pathways: (1) cell autonomously expressed cryptochrome (CRY), (2) rhodopsin 7 (Rh7), and (3) synaptic inputs from the eyes and other external photoreceptors that express opsins and CRY. We explored the relative photoelectrical and behavioral input contributions of these three photoreceptor systems to determine their functional impact in flies. Patch-clamp electrophysiology measuring light evoked firing frequency (FF) was performed on large LNvs (l-LNvs) in response to UV (365 nm), violet (405 nm), blue (450 nm), or red (635 nm) LED light stimulation, testing controls versus mutants that lack photoreceptor inputs gl60j, cry-null, rh7-null, and double mutant gl60j-cry-null flies. For UV, violet, and blue short wavelength light inputs, all photoreceptor mutants show significantly attenuated action potential FF responses measured in the l-LNv. In contrast, red light FF responses are only significantly attenuated in double mutant gl60j-cry-null flies. We used a light-pulse arousal assay to compare behavioral responses to UV, violet, blue and red light of control and light input mutants, measuring the awakening arousal response of flies during subjective nighttime at two different intensities to capture potential threshold differences (10 and 400 µW/cm2). The light arousal behavioral results are similar to the electrophysiological results, showing significant attenuation of behavioral light responses for mutants compared to control. These results show that the different LNv convergent photoreceptor systems are integrated and together confer functional redundancy for light evoked behavioral arousal.

14.
iScience ; 26(5): 106703, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37250317

RESUMO

Hippocampal CA1 neuronal ensembles generate sequential patterns of firing activity that contribute to episodic memory formation and spatial cognition. Here we used in vivo calcium imaging to record neural ensemble activities in mouse hippocampal CA1 and identified CA1 excitatory neuron sub-populations whose members are active across the same second-long period of time. We identified groups of hippocampal neurons sharing temporally correlated neural calcium activity during behavioral exploration and found that they also organized as clusters in anatomical space. Such clusters vary in membership and activity dynamics with respect to movement in different environments, but also appear during immobility in the dark suggesting an internal dynamic. The strong covariance between dynamics and anatomical location within the CA1 sub-region reveals a previously unrecognized form of topographic representation in hippocampus that may guide generation of hippocampal sequences across time and therefore organize the content of episodic memory.

15.
Mol Psychiatry ; 28(10): 4407-4420, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36959497

RESUMO

The study of Alzheimer's Disease (AD) has traditionally focused on neuropathological mechanisms that has guided therapies that attenuate neuropathological features. A new direction is emerging in AD research that focuses on the progressive loss of cognitive function due to disrupted neural circuit mechanisms. Evidence from humans and animal models of AD show that dysregulated circuits initiate a cascade of pathological events that culminate in functional loss of learning, memory, and other aspects of cognition. Recent progress in single-cell, spatial, and circuit omics informs this circuit-focused approach by determining the identities, locations, and circuitry of the specific cells affected by AD. Recently developed neuroscience tools allow for precise access to cell type-specific circuitry so that their functional roles in AD-related cognitive deficits and disease progression can be tested. An integrated systems-level understanding of AD-associated neural circuit mechanisms requires new multimodal and multi-scale interrogations that longitudinally measure and/or manipulate the ensemble properties of specific molecularly-defined neuron populations first susceptible to AD. These newly developed technological and conceptual advances present new opportunities for studying and treating circuits vulnerable in AD and represent the beginning of a new era for circuit-based AD research.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Animais , Humanos , Doença de Alzheimer/patologia , Aprendizagem , Cognição , Neurônios/patologia
16.
Neurobiol Stress ; 23: 100527, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36861029

RESUMO

The anterior portion of the bed nucleus of the stria terminalis (BNST) modulates fear and stress responses. The anterodorsal BNST (adBNST) can be anatomically subdivided further into the lateral and medial divisions. Although output projections of BNST subregions have been studied, the local and global input connections to these subregions remain poorly understood. To further understand BNST-centered circuit operations, we have applied new viral-genetic tracing and functional circuit mapping to determine detailed synaptic circuit inputs to lateral and medial subregions of adBNST in the mouse. Monosynaptic canine adenovirus type 2 (CAV2) and rabies virus-based retrograde tracers were injected in the adBNST subregions. The amygdalar complex, hypothalamus and hippocampal formation account for the majority of overall inputs to adBNST. However, lateral versus medial adBNST subregions have distinct patterns of long-range cortical and limbic brain inputs. The lateral adBNST has more input connections from prefrontal (prelimbic, infralimbic, cingulate) and insular cortices, anterior thalamus and ectorhinal/perirhinal cortices. In contrast, the medial adBNST received biased inputs from the medial amygdala, lateral septum, hypothalamus nuclei and ventral subiculum. We confirmed long-range functional inputs from the amydalohippocampal area and basolateral amygdala to the adBNST using ChR2-assisted circuit mapping. Selected novel BNST inputs are also validated with the AAV axonal tracing data from the Allen Institute Mouse Brain Connectivity Atlas. Together, these results provide a comprehensive map of the differential afferent inputs to lateral and medial adBNST subregions, and offer new insight into the functional operations of BNST circuitry for stress and anxiety-related behaviors.

18.
Dermatol Surg ; 49(2): 135-139, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36728063

RESUMO

BACKGROUND: Dermatologists perform most interpolated flaps after skin cancer resection. Prospective, multicenter data on complications after interpolated flap repair in this setting are limited. OBJECTIVE: To determine the rate of physician-reported complications after interpolated flap repair of the nose. METHODS: Multicenter, prospective cohort study of 169 patients undergoing 2-stage interpolated flap repair of post-Mohs nasal defects. Frequency of bleeding, infection, dehiscence, necrosis, hospitalization, and death in the 30 days after flap placement and flap takedown are reported. RESULTS: Patients experienced 23 complications after flap placement (13.61%) and 6 complications after flap takedown (3.55%) that were related to the surgical procedure. The most frequent complication after flap placement was bleeding (9, 5.33%, 95% confidence interval [CI]: 2.83%-9.82%). The most frequent complication after flap takedown was infection (5, 2.96%, 95% CI: 1.27%-6.74%). There was one hospitalization related to an adverse reaction to antibiotics. There were no deaths. CONCLUSION: Most complications after interpolated flap repair for post-Mohs defects of the nose are minor and are associated with flap placement. Interpolated flap repair for post-Mohs defects can be performed safely in the outpatient setting under local anesthesia.


Assuntos
Cirurgia de Mohs , Neoplasias Nasais , Humanos , Estudos Prospectivos , Cirurgia de Mohs/efeitos adversos , Retalhos Cirúrgicos/cirurgia , Nariz/cirurgia , Neoplasias Nasais/cirurgia , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/cirurgia , Estudos Retrospectivos
19.
Neurobiol Dis ; 176: 105939, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462718

RESUMO

A key challenge in developing diagnosis and treatments for Alzheimer's disease (AD) is to detect abnormal network activity at as early a stage as possible. To date, behavioral and neurophysiological investigations in AD model mice have yet to conduct a longitudinal assessment of cellular pathology, memory deficits, and neurophysiological correlates of neuronal activity. We therefore examined the temporal relationships between pathology, neuronal activities and spatial representation of environments, as well as object location memory deficits across multiple stages of development in the 5xFAD mice model and compared these results to those observed in wild-type mice. We performed longitudinal in vivo calcium imaging with miniscope on hippocampal CA1 neurons in behaving mice. We find that 5xFAD mice show amyloid plaque accumulation, depressed neuronal calcium activity during immobile states, and degenerate and unreliable hippocampal neuron spatial tuning to environmental location at early stages by 4 months of age while their object location memory (OLM) is comparable to WT mice. By 8 months of age, 5xFAD mice show deficits of OLM, which are accompanied by progressive degradation of spatial encoding and, eventually, impaired CA1 neural tuning to object-location pairings. Furthermore, depressed neuronal activity and unreliable spatial encoding at early stage are correlated with impaired performance in OLM at 8-month-old. Our results indicate the close connection between impaired hippocampal tuning to object-location and the presence of OLM deficits. The results also highlight that depressed baseline firing rates in hippocampal neurons during immobile states and unreliable spatial representation precede object memory deficits and predict memory deficits at older age, suggesting potential early opportunities for AD detecting.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...