Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 11(11): 3860-3877, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37078624

RESUMO

Tissue engineering is a promising methodology to produce advanced therapy medicinal products (ATMPs). We have developed personalized tissue engineered veins (P-TEV) as an alternative to autologous or synthetic vascular grafts utilized in reconstructive vein surgery. Our hypothesis is that individualization through reconditioning of a decellularized allogenic graft with autologous blood will prime the tissue for efficient recellularization, protect the graft from thrombosis, and decrease the risk of rejection. In this study, P-TEVs were transplanted to vena cava in pig, and the analysis of three veins after six months, six veins after 12 months and one vein after 14 months showed that all P-TEVs were fully patent, and the tissue was well recellularized and revascularized. To confirm that the ATMP product had the expected characteristics one year after transplantation, gene expression profiling of cells from P-TEV and native vena cava were analyzed and compared by qPCR and sequencing. The qPCR and bioinformatics analysis confirmed that the cells from the P-TEV were highly similar to the native cells, and we therefore conclude that P-TEV is functional and safe in large animals and have high potential for use as a clinical transplant graft.


Assuntos
Engenharia Tecidual , Veias , Animais , Suínos , Engenharia Tecidual/métodos , Veias/transplante , Células Endoteliais , Perfilação da Expressão Gênica
2.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940797

RESUMO

There is a strong anticipated future for human induced pluripotent stem cell-derived hepatocytes (hiPS-HEP), but so far, their use has been limited due to insufficient functionality. We investigated the potential of hiPS-HEP as an in vitro model for metabolic diseases by combining transcriptomics with multiple functional assays. The transcriptomics analysis revealed that 86% of the genes were expressed at similar levels in hiPS-HEP as in human primary hepatocytes (hphep). Adult characteristics of the hiPS-HEP were confirmed by the presence of important hepatocyte features, e.g., Albumin secretion and expression of major drug metabolizing genes. Normal energy metabolism is crucial for modeling metabolic diseases, and both transcriptomics data and functional assays showed that hiPS-HEP were similar to hphep regarding uptake of glucose, low-density lipoproteins (LDL), and fatty acids. Importantly, the inflammatory state of the hiPS-HEP was low under standard conditions, but in response to lipid accumulation and ER stress the inflammation marker tumor necrosis factor α (TNFα) was upregulated. Furthermore, hiPS-HEP could be co-cultured with primary hepatic stellate cells both in 2D and in 3D spheroids, paving the way for using these co-cultures for modeling non-alcoholic steatohepatitis (NASH). Taken together, hiPS-HEP have the potential to serve as an in vitro model for metabolic diseases. Furthermore, differently expressed genes identified in this study can serve as targets for future improvements of the hiPS-HEP.


Assuntos
Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Metabólicas/metabolismo , Transcriptoma , Idoso , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Estresse do Retículo Endoplasmático , Metabolismo Energético , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Hepatócitos/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lipoproteínas LDL/metabolismo , Masculino , Doenças Metabólicas/genética , Pessoa de Meia-Idade , Cultura Primária de Células/métodos , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo
3.
J Intensive Care ; 7: 44, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31428430

RESUMO

PURPOSE: We investigated if early intensive care unit (ICU) scoring with the Simplified Acute Physiology Score (SAPS 3) could be improved using artificial neural networks (ANNs). METHODS: All first-time adult intensive care admissions in Sweden during 2009-2017 were included. A test set was set aside for validation. We trained ANNs with two hidden layers with random hyper-parameters and retained the best ANN, determined using cross-validation. The ANNs were constructed using the same parameters as in the SAPS 3 model. The performance was assessed with the area under the receiver operating characteristic curve (AUC) and Brier score. RESULTS: A total of 217,289 admissions were included. The developed ANN (AUC 0.89 and Brier score 0.096) was found to be superior (p <10-15 for AUC and p <10-5 for Brier score) in early prediction of 30-day mortality for intensive care patients when compared with SAPS 3 (AUC 0.85 and Brier score 0.109). In addition, a simple, eight-parameter ANN model was found to perform just as well as SAPS 3, but with better calibration (AUC 0.85 and and Brier score 0.106, p <10-5). Furthermore, the ANN model was superior in correcting mortality for age. CONCLUSION: ANNs can outperform the SAPS 3 model for early prediction of 30-day mortality for intensive care patients.

4.
Toxicol Sci ; 163(1): 182-195, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385562

RESUMO

Anthracyclines, such as doxorubicin, are highly efficient chemotherapeutic agents against a variety of cancers. However, anthracyclines are also among the most cardiotoxic therapeutic drugs presently on the market. Chemotherapeutic-induced cardiomyopathy is one of the leading causes of disease and mortality in cancer survivors. The exact mechanisms responsible for doxorubicin-induced cardiomyopathy are not completely known, but the fact that the cardiotoxicity is dose-dependent and that there is a variation in time-to-onset of toxicity, and gender- and age differences suggests that several mechanisms may be involved. In this study, we investigated doxorubicin-induced cardiotoxicity in human pluripotent stem cell-derived cardiomyocytes using proteomics. In addition, different sources of omics data (protein, mRNA, and microRNA) from the same experimental setup were further combined and analyzed using newly developed methods to identify differential expression in data of various origin and types. Subsequently, the results were integrated in order to generate a combined visualization of the findings. In our experimental model system, we exposed cardiomyocytes derived from human pluripotent stem cells to doxorubicin for up to 2 days, followed by a wash-out period of additionally 12 days. Besides an effect on the cell morphology and cardiomyocyte functionality, the data show a strong effect of doxorubicin on all molecular levels investigated. Differential expression patterns that show a linkage between the proteome, transcriptome, and the regulatory microRNA network, were identified. These findings help to increase the understanding of the mechanisms behind anthracycline-induced cardiotoxicity and suggest putative biomarkers for this condition.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Doxorrubicina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Proteínas/metabolismo , Transcriptoma/efeitos dos fármacos , Biomarcadores/metabolismo , Cardiotoxicidade , Células Cultivadas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Toxicol In Vitro ; 34: 26-34, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27033315

RESUMO

Anthracyclines, such as doxorubicin, are well-established, highly efficient anti-neoplastic drugs used for treatment of a variety of cancers, including solid tumors, leukemia, lymphomas, and breast cancer. The successful use of doxorubicin has, however, been hampered by severe cardiotoxic side-effects. In order to prevent or reverse negative side-effects of doxorubicin, it is important to find early biomarkers of heart injury and drug-induced cardiotoxicity. The high stability under extreme conditions, presence in various body fluids, and tissue-specificity, makes microRNAs very suitable as clinical biomarkers. The present study aimed towards evaluating the early and late effects of doxorubicin on the microRNA expression in cardiomyocytes derived from human pluripotent stem cells. We report on several microRNAs, including miR-34a, miR-34b, miR-187, miR-199a, miR-199b, miR-146a, miR-15b, miR-130a, miR-214, and miR-424, that are differentially expressed upon, and after, treatment with doxorubicin. Investigation of the biological relevance of the identified microRNAs revealed connections to cardiomyocyte function and cardiotoxicity, thus supporting the findings of these microRNAs as potential biomarkers for drug-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotoxicidade/genética , Doxorrubicina/toxicidade , MicroRNAs/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Biomarcadores/metabolismo , Cardiotoxicidade/etiologia , Células Cultivadas , Humanos , Miócitos Cardíacos/metabolismo
6.
Stem Cells Int ; 2016: 2475631, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880940

RESUMO

Hepatotoxicity is one of the most cited reasons for withdrawal of approved drugs from the market. The use of nonclinically relevant in vitro and in vivo testing systems contributes to the high attrition rates. Recent advances in differentiating human induced pluripotent stem cells (hiPSCs) into pure cultures of hepatocyte-like cells expressing functional drug metabolizing enzymes open up possibilities for novel, more relevant human cell based toxicity models. The present study aimed to investigate the use of hiPSC derived hepatocytes for conducting mechanistic toxicity testing by image based high content analysis (HCA). The hiPSC derived hepatocytes were exposed to drugs known to cause hepatotoxicity through steatosis and phospholipidosis, measuring several endpoints representing different mechanisms involved in drug induced hepatotoxicity. The hiPSC derived hepatocytes were benchmarked to the HepG2 cell line and generated robust HCA data with low imprecision between plates and batches. The different parameters measured were detected at subcytotoxic concentrations and the order of which the compounds were categorized (as severe, moderate, mild, or nontoxic) based on the degree of injury at isomolar concentration corresponded to previously published data. Taken together, the present study shows how hiPSC derived hepatocytes can be used as a platform for screening drug induced hepatotoxicity by HCA.

7.
Physiol Genomics ; 47(6): 232-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25852171

RESUMO

Reference genes, often referred to as housekeeping genes (HKGs), are frequently used to normalize gene expression data based on the assumption that they are expressed at a constant level in the cells. However, several studies have shown that there may be a large variability in the gene expression levels of HKGs in various cell types. In a previous study, employing human embryonic stem cells (hESCs) subjected to spontaneous differentiation, we observed that the expression of commonly used HKG varied to a degree that rendered them inappropriate to use as reference genes under those experimental settings. Here we present a substantially extended study of the HKG signature in human pluripotent stem cells (hPSC), including nine global gene expression datasets from both hESC and human induced pluripotent stem cells, obtained during directed differentiation toward endoderm-, mesoderm-, and ectoderm derivatives. Sets of stably expressed genes were compiled, and a handful of genes (e.g., EID2, ZNF324B, CAPN10, and RABEP2) were identified as generally applicable reference genes in hPSCs across all cell lines and experimental conditions. The stability in gene expression profiles was confirmed by reverse transcription quantitative PCR analysis. Taken together, the current results suggest that differentiating hPSCs have a distinct HKG signature, which in some aspects is different from somatic cell types, and underscore the necessity to validate the stability of reference genes under the actual experimental setup used. In addition, the novel putative HKGs identified in this study can preferentially be used for normalization of gene expression data obtained from differentiating hPSCs.


Assuntos
Diferenciação Celular/genética , Genes , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Padrões de Referência
8.
Toxicology ; 328: 102-11, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25529476

RESUMO

Doxorubicin is a chemotherapeutic agent indicated for the treatment of a variety of cancer types, including leukaemia, lymphomas, and many solid tumours. The use of doxorubicin is, however, associated with severe cardiotoxicity, often resulting in early discontinuation of the treatment. Importantly, the toxic symptoms can occur several years after the termination of the doxorubicin administration. In this study, the toxic effects of doxorubicin exposure have been investigated in cardiomyocytes derived from human embryonic stem cells (hESC). The cells were exposed to different concentrations of doxorubicin for up to 2 days, followed by a 12 day recovery period. Notably, the cell morphology was altered during drug treatment and the cells showed a reduced contractile ability, most prominent at the highest concentration of doxorubicin at the later time points. A general cytotoxic response measured as Lactate dehydrogenase leakage was observed after 2 days' exposure compared to the vehicle control, but this response was absent during the recovery period. A similar dose-dependant pattern was observed for the release of cardiac specific troponin T (cTnT) after 1 day and 2 days of treatment with doxorubicin. Global transcriptional profiles in the cells revealed clusters of genes that were differentially expressed during doxorubicin exposure, a pattern that in some cases was sustained even throughout the recovery period, suggesting that these genes could be used as sensitive biomarkers for doxorubicin-induced toxicity in human cardiomyocytes. The results from this study show that cTnT release can be used as a measurement of acute cardiotoxicity due to doxorubicin. However, for the late onset of doxorubicin-induced cardiomyopathy, cTnT release might not be the most optimal biomarker. As an alternative, some of the genes that we identified as differentially expressed after doxorubicin exposure could serve as more relevant biomarkers, and may also help to explain the cellular mechanisms behind the late onset apoptosis associated with doxorubicin-induced cardiomyopathy.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Diferenciação Celular , Doxorrubicina/toxicidade , Células-Tronco Embrionárias/efeitos dos fármacos , Cardiopatias/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Células-Tronco Pluripotentes/efeitos dos fármacos , Biomarcadores/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Troponina T/metabolismo
9.
Drug Metab Dispos ; 42(9): 1401-6, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980256

RESUMO

Human pluripotent stem cells (hPSC) have the potential to become important tools for the establishment of new models for in vitro drug testing of, for example, toxicity and pharmacological effects. Late-stage attrition in the pharmaceutical industry is to a large extent caused by selection of drug candidates using nonpredictive preclinical models that are not clinically relevant. The current hepatic in vivo and in vitro models show clear limitations, especially for studies of chronic hepatotoxicity. For these reasons, we evaluated the potential of using hPSC-derived hepatocytes for long-term exposure to toxic drugs. The differentiated hepatocytes were incubated with hepatotoxic compounds for up to 14 days, using a repeated-dose approach. The hPSC-derived hepatocytes became more sensitive to the toxic compounds after extended exposures and, in addition to conventional cytotoxicity, evidence of phospholipidosis and steatosis was also observed in the cells. This is, to the best of our knowledge, the first report of a long-term toxicity study using hPSC-derived hepatocytes, and the observations support further development and validation of hPSC-based toxicity models for evaluating novel drugs, chemicals, and cosmetics.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Hepatócitos/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Células-Tronco Pluripotentes/efeitos dos fármacos , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos/métodos , Fígado Gorduroso/induzido quimicamente , Células Hep G2 , Humanos , Lipidoses/induzido quimicamente , Fígado/efeitos dos fármacos
10.
Biochem Pharmacol ; 86(5): 691-702, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23856292

RESUMO

Human embryonic and induced pluripotent stem cell-derived hepatocytes (hESC-Hep and hiPSC-Hep) have the potential to provide relevant human in vitro model systems for toxicity testing and drug discovery studies. In this study, the expression and function of important drug metabolizing cytochrome P450 (CYP) enzymes and transporter proteins in hESC-Hep and hiPSC-Hep were compared to cryopreserved human primary hepatocytes (hphep) and HepG2 cells. Overall, CYP activities in hESC-Hep and hiPSC-Hep were much lower than in hphep cultured for 4 h, but CYP1A and 3A activities were comparable to levels in hphep cultured for 48h (CYP1A: 35% and 26% of 48 h hphep, respectively; CYP3A: 80% and 440% of 48 h hphep, respectively). Importantly, in hESC-Hep and hiPSC-Hep, CYP activities were stable or increasing for at least one week in culture which was in contrast to the rapid loss of CYP activities in cultured hphep between 4 and 48 h after plating. With regard to transporters, in hESC-Hep and hiPSC-Hep, pronounced NTCP activity (17% and 29% of 4 h hphep, respectively) and moderate BSEP activity (6% and 8% of 4 h hphep, respectively) were observed. Analyses of mRNA expression and immunocytochemistry supported the observed CYP and transporter activities and showed expression of additional CYPs and transporters. In conclusion, the stable expression and function of CYPs and transporters in hESC-Hep and hiPSC-Hep for at least one week opens up the possibility to reproducibly perform long term and extensive studies, e.g. chronic toxicity testing, in a stem cell-derived hepatic system.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Células-Tronco Embrionárias/metabolismo , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Hepatócitos/enzimologia , Humanos , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Transportador 1 de Cátions Orgânicos/genética , Transportador 1 de Cátions Orgânicos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
11.
Carcinogenesis ; 34(6): 1393-402, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23393228

RESUMO

As the conventional approach to assess the potential of a chemical to cause cancer in humans still includes the 2-year rodent carcinogenicity bioassay, development of alternative methodologies is needed. In the present study, the transcriptomics responses following exposure to genotoxic (GTX) and non-genotoxic (NGTX) hepatocarcinogens and non-carcinogens (NC) in five liver-based in vitro models, namely conventional and epigenetically stabilized cultures of primary rat hepatocytes, the human hepatoma-derived cell lines HepaRG and HepG2 and human embryonic stem cell-derived hepatocyte-like cells, are examined. For full characterization of the systems, several bioinformatics approaches are employed including gene-based, ConsensusPathDB-based and classification analysis. They provide convincingly similar outcomes, namely that upon exposure to carcinogens, the HepaRG generates a gene classifier (a gene classifier is defined as a selected set of characteristic gene signatures capable of distinguishing GTX, NGTX carcinogens and NC) able to discriminate the GTX carcinogens from the NGTX carcinogens and NC. The other in vitro models also yield cancer-relevant characteristic gene groups for the GTX exposure, but some genes are also deregulated by the NGTX carcinogens and NC. Irrespective of the tested in vitro model, the most uniformly expressed pathways following GTX exposure are the p53 and those that are subsequently induced. The NGTX carcinogens triggered no characteristic cancer-relevant gene profiles in all liver-based in vitro systems. In conclusion, liver-based in vitro models coupled with transcriptomics techniques, especially in the case when the HepaRG cell line is used, represent valuable tools for obtaining insight into the mechanism of action and identification of GTX carcinogens.


Assuntos
Carcinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Mutagênicos/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Carcinógenos/farmacologia , Linhagem Celular Tumoral , Células-Tronco Embrionárias/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas , Mutagênicos/farmacologia , Ratos , Ratos Sprague-Dawley , Proteína Supressora de Tumor p53/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...