Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(1): E99-E108, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344294

RESUMO

Fragile X mental retardation protein (FMRP) and Ataxin-2 (Atx2) are triplet expansion disease- and stress granule-associated proteins implicated in neuronal translational control and microRNA function. We show that Drosophila FMRP (dFMR1) is required for long-term olfactory habituation (LTH), a phenomenon dependent on Atx2-dependent potentiation of inhibitory transmission from local interneurons (LNs) to projection neurons (PNs) in the antennal lobe. dFMR1 is also required for LTH-associated depression of odor-evoked calcium transients in PNs. Strong transdominant genetic interactions among dFMR1, atx2, the deadbox helicase me31B, and argonaute1 (ago1) mutants, as well as coimmunoprecitation of dFMR1 with Atx2, indicate that dFMR1 and Atx2 function together in a microRNA-dependent process necessary for LTH. Consistently, PN or LN knockdown of dFMR1, Atx2, Me31B, or the miRNA-pathway protein GW182 increases expression of a Ca2+/calmodulin-dependent protein kinase II (CaMKII) translational reporter. Moreover, brain immunoprecipitates of dFMR1 and Atx2 proteins include CaMKII mRNA, indicating respective physical interactions with this mRNA. Because CaMKII is necessary for LTH, these data indicate that fragile X mental retardation protein and Atx2 act via at least one common target RNA for memory-associated long-term synaptic plasticity. The observed requirement in LNs and PNs supports an emerging view that both presynaptic and postsynaptic translation are necessary for long-term synaptic plasticity. However, whereas Atx2 is necessary for the integrity of dendritic and somatic Me31B-containing particles, dFmr1 is not. Together, these data indicate that dFmr1 and Atx2 function in long-term but not short-term memory, regulating translation of at least some common presynaptic and postsynaptic target mRNAs in the same cells.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Habituação Psicofisiológica , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Olfato/fisiologia , Animais , Ataxinas , Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Drosophila melanogaster/fisiologia , Regulação da Expressão Gênica , Genes Reporter , Genótipo , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador , Memória de Longo Prazo , MicroRNAs/metabolismo , Microscopia de Fluorescência , Mutação , Plasticidade Neuronal
2.
J Neurosci ; 32(21): 7225-31, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22623667

RESUMO

Recurrent inhibition, wherein excitatory principal neurons stimulate inhibitory interneurons that feedback on the same principal cells, occurs ubiquitously in the brain. However, the regulation and function of recurrent inhibition are poorly understood in terms of the contributing interneuron subtypes as well as their effect on neural and cognitive outputs. In the Drosophila olfactory system, odorants activate olfactory sensory neurons (OSNs), which stimulate projection neurons (PNs) in the antennal lobe. Both OSNs and PNs activate local inhibitory neurons (LNs) that provide either feedforward or recurrent/feedback inhibition in the lobe. During olfactory habituation, prior exposure to an odorant selectively decreases the animal's subsequent response to the odorant. We show here that habituation occurs in response to feedback from PNs. Output from PNs is necessary for olfactory habituation and, in the absence of odorant, direct PN activation is sufficient to induce the odorant-selective behavioral attenuation characteristic of olfactory habituation. PN-induced habituation occludes further odor-induced habituation and similarly requires GABA(A)Rs and NMDARs in PNs, as well as VGLUT and cAMP signaling in the multiglomerular inhibitory local interneurons (LN1) type of LN. Thus, PN output is monitored by an LN subtype whose resultant plasticity underlies behavioral habituation. We propose that recurrent inhibitory motifs common in neural circuits may similarly underlie habituation to other complex stimuli.


Assuntos
Antenas de Artrópodes/fisiologia , Conexinas/fisiologia , Proteínas de Drosophila/fisiologia , Retroalimentação Sensorial/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Inibição Neural/fisiologia , Condutos Olfatórios/fisiologia , Animais , Animais Geneticamente Modificados , Conexinas/genética , AMP Cíclico/fisiologia , Drosophila , Proteínas de Drosophila/genética , Dinaminas/genética , Dinaminas/fisiologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/fisiologia , Habituação Psicofisiológica/fisiologia , Canais Iônicos , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia , Receptores Odorantes/fisiologia , Células Receptoras Sensoriais/fisiologia , Olfato/fisiologia , Canal de Cátion TRPA1 , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/fisiologia
3.
Proc Natl Acad Sci U S A ; 108(36): E655-62, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21795609

RESUMO

Local control of mRNA translation has been proposed as a mechanism for regulating synapse-specific plasticity associated with long-term memory. We show here that glomerulus-selective plasticity of Drosophila multiglomerular local interneurons observed during long-term olfactory habituation (LTH) requires the Ataxin-2 protein (Atx2) to function in uniglomerular projection neurons (PNs) postsynaptic to local interneurons (LNs). PN-selective knockdown of Atx2 selectively blocks LTH to odorants to which the PN responds and in addition selectively blocks LTH-associated structural and functional plasticity in odorant-responsive glomeruli. Atx2 has been shown previously to bind DEAD box helicases of the Me31B family, proteins associated with Argonaute (Ago) and microRNA (miRNA) function. Robust transdominant interactions of atx2 with me31B and ago1 indicate that Atx2 functions with miRNA-pathway components for LTH and associated synaptic plasticity. Further direct experiments show that Atx2 is required for miRNA-mediated repression of several translational reporters in vivo. Together, these observations (i) show that Atx2 and miRNA components regulate synapse-specific long-term plasticity in vivo; (ii) identify Atx2 as a component of the miRNA pathway; and (iii) provide insight into the biological function of Atx2 that is of potential relevance to spinocerebellar ataxia and neurodegenerative disease.


Assuntos
Habituação Psicofisiológica/fisiologia , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Olfato/fisiologia , Animais , Proteínas Argonautas , Ataxinas , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Técnicas de Silenciamento de Genes , MicroRNAs/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Sinapses/genética , Sinapses/metabolismo
4.
Proc Natl Acad Sci U S A ; 108(36): E646-54, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21795607

RESUMO

Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABA(A) receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.


Assuntos
Habituação Psicofisiológica/fisiologia , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Olfato/fisiologia , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Transativadores/genética , Transativadores/metabolismo
5.
PLoS Biol ; 9(1): e1000568, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21283833

RESUMO

In neurogenesis, neural cell fate specification is generally triggered by proneural transcription factors. Whilst the role of proneural factors in fate specification is well studied, the link between neural specification and the cellular pathways that ultimately must be activated to construct specialised neurons is usually obscure. High-resolution temporal profiling of gene expression reveals the events downstream of atonal proneural gene function during the development of Drosophila chordotonal (mechanosensory) neurons. Among other findings, this reveals the onset of expression of genes required for construction of the ciliary dendrite, a key specialisation of mechanosensory neurons. We determine that atonal activates this cellular differentiation pathway in several ways. Firstly, atonal directly regulates Rfx, a well-known highly conserved ciliogenesis transcriptional regulator. Unexpectedly, differences in Rfx regulation by proneural factors may underlie variations in ciliary dendrite specialisation in different sensory neuronal lineages. In contrast, fd3F encodes a novel forkhead family transcription factor that is exclusively expressed in differentiating chordotonal neurons. fd3F regulates genes required for specialized aspects of chordotonal dendrite physiology. In addition to these intermediate transcriptional regulators, we show that atonal directly regulates a novel gene, dilatory, that is directly associated with ciliogenesis during neuronal differentiation. Our analysis demonstrates how early cell fate specification factors can regulate structural and physiological differentiation of neuronal cell types. It also suggests a model for how subtype differentiation in different neuronal lineages may be regulated by different proneural factors. In addition, it provides a paradigm for how transcriptional regulation may modulate the ciliogenesis pathway to give rise to structurally and functionally specialised ciliary dendrites.


Assuntos
Drosophila/metabolismo , Perfilação da Expressão Gênica , Células Receptoras Sensoriais/fisiologia , Regulação para Cima , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Linhagem Celular , Cílios/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Genes Reporter , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição de Fator Regulador X , Células Receptoras Sensoriais/ultraestrutura , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
PLoS Genet ; 3(7): e112, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17616980

RESUMO

Insulator or enhancer-blocking elements are proposed to play an important role in the regulation of transcription by preventing inappropriate enhancer/promoter interaction. The zinc-finger protein CTCF is well studied in vertebrates as an enhancer blocking factor, but Drosophila CTCF has only been characterised recently. To date only one endogenous binding location for CTCF has been identified in the Drosophila genome, the Fab-8 insulator in the Abdominal-B locus in the Bithorax complex (BX-C). We carried out chromatin immunopurification coupled with genomic microarray analysis to identify CTCF binding sites within representative regions of the Drosophila genome, including the 3-Mb Adh region, the BX-C, and the Antennapedia complex. Location of in vivo CTCF binding within these regions enabled us to construct a robust CTCF binding-site consensus sequence. CTCF binding sites identified in the BX-C map precisely to the known insulator elements Mcp, Fab-6, and Fab-8. Other CTCF binding sites correlate with boundaries of regulatory domains allowing us to locate three additional presumptive insulator elements; "Fab-2," "Fab-3," and "Fab-4." With the exception of Fab-7, our data indicate that CTCF is directly associated with all known or predicted insulators in the BX-C, suggesting that the functioning of these insulators involves a common CTCF-dependent mechanism. Comparison of the locations of the CTCF sites with characterised Polycomb target sites and histone modification provides support for the domain model of BX-C regulation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação/genética , Fator de Ligação a CCCTC , Imunoprecipitação da Cromatina , Sequência Consenso , DNA/genética , DNA/metabolismo , Primers do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Genes de Insetos , Genoma de Inseto , Elementos Isolantes , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Repressoras/genética
7.
Dev Genes Evol ; 217(3): 209-19, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17260155

RESUMO

In this paper, we address the role of proneural genes in the formation of the dorsal organ in the Drosophila larva. This organ is an intricate compound comprising the multineuronal dome-the exclusive larval olfactory organ-and a number of mostly gustatory sensilla. We first determine the numbers of neurons and of the different types of accessory cells in the dorsal organ. From these data, we conclude that the dorsal organ derives from 14 sensory organ precursor cells. Seven of them appear to give rise to the dome, which therefore may be composed of seven fused sensilla, whereas the other precursors produce the remaining sensilla of the dorsal organ. By a loss-of-function approach, we then analyze the role of atonal, amos, and the achaete-scute complex (AS-C), which in the adult are the exclusive proneural genes required for chemosensory organ specification. We show that atonal and amos are necessary and sufficient in a complementary way for four and three of the sensory organ precursors of the dome, respectively. AS-C, on the other hand, is implicated in specifying the non-olfactory sensilla, partially in cooperation with atonal and/or amos. Similar links for these proneural genes with olfactory and gustatory function have been established in the adult fly. However, such conserved gene function is not trivial, given that adult and larval chemosensory organs are anatomically very different and that the development of adult olfactory sensilla involves cell recruitment, which is unlikely to play a role in dome formation.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Genes de Insetos , Bulbo Olfatório/citologia , Bulbo Olfatório/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/metabolismo , Animais , Drosophila melanogaster/citologia , Embrião não Mamífero/citologia , Larva/genética , Larva/crescimento & desenvolvimento , Modelos Biológicos , Mutação/genética , Bulbo Olfatório/ultraestrutura , Neurônios Receptores Olfatórios/ultraestrutura
8.
BMC Dev Biol ; 6: 53, 2006 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17094800

RESUMO

BACKGROUND: The regulation of proneural gene expression is an important aspect of neurogenesis. In the study of the Drosophila proneural genes, scute and atonal, several themes have emerged that contribute to our understanding of the mechanism of neurogenesis. First, spatial complexity in proneural expression results from regulation by arrays of enhancer elements. Secondly, regulation of proneural gene expression occurs in distinct temporal phases, which tend to be under the control of separate enhancers. Thirdly, the later phase of proneural expression often relies on positive autoregulation. The control of these phases and the transition between them appear to be central to the mechanism of neurogenesis. We present the first investigation of the regulation of the proneural gene, amos. RESULTS: Amos protein expression has a complex pattern and shows temporally distinct phases, in common with previously characterised proneural genes. GFP reporter gene constructs were used to demonstrate that amos has an array of enhancer elements up- and downstream of the gene, which are required for different locations of amos expression. However, unlike other proneural genes, there is no evidence for separable enhancers for the different temporal phases of amos expression. Using mutant analysis and site-directed mutagenesis of potential Amos binding sites, we find no evidence for positive autoregulation as an important part of amos control during neurogenesis. CONCLUSION: For amos, as for other proneural genes, a complex expression pattern results from the sum of a number of simpler sub-patterns driven by specific enhancers. There is, however, no apparent separation of enhancers for distinct temporal phases of expression, and this correlates with a lack of positive autoregulation. For scute and atonal, both these features are thought to be important in the mechanism of neurogenesis. Despite similarities in function and expression between the Drosophila proneural genes, amos is regulated in a fundamentally different way from scute and atonal.


Assuntos
Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Crescimento Neural/genética , Neurônios/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Proteínas de Drosophila/fisiologia , Mutagênese Sítio-Dirigida , Fatores de Crescimento Neural/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
9.
Development ; 130(19): 4683-93, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12925594

RESUMO

Proneural genes encode basic-helix-loop-helix (bHLH) transcription factors required for neural precursor specification. Recently amos was identified as a new candidate Drosophila proneural gene related to atonal. Having isolated the first specific amos loss-of-function mutations, we show definitively that amos is required to specify the precursors of two classes of olfactory sensilla. Unlike other known proneural mutations, a novel characteristic of amos loss of function is the appearance of ectopic sensory bristles in addition to loss of olfactory sensilla, owing to the inappropriate function of scute. This supports a model of inhibitory interactions between proneural genes, whereby ato-like genes (amos and ato) must suppress sensory bristle fate as well as promote alternative sense organ subtypes.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/embriologia , Morfogênese/fisiologia , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/genética , Estruturas Embrionárias/anatomia & histologia , Estruturas Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Sequências Hélice-Alça-Hélice , Hibridização In Situ , Mecanorreceptores/citologia , Mecanorreceptores/fisiologia , Mutação , Proteínas do Tecido Nervoso , Neurônios Receptores Olfatórios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA