Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Respir Care ; 68(6): 749-759, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37041030

RESUMO

BACKGROUND: Respiratory therapists (RTs) work alongside allied health staff, nurses, and physicians during stressful and traumatic events that can be associated with emotional and physiological implications known as second victim (SV) experiences (SVEs). This study aimed to evaluate SVEs of RTs, including both positive and negative implications. METHODS: RTs within a large academic health care organization across Minnesota, Wisconsin, Florida, and Arizona were asked to participate in an anonymous survey that included the validated Second Victim Experience and Support Tool-Revised to assess SVEs as well as desired support services. RESULTS: Of the RTs invited to participate, 30.8% (171/555) completed the survey. Of the 171 survey respondents, 91.2% (156) reported that they had been part of a stressful or traumatic work-related event as an RT, student, or department support staff member. Emotional or physiologic implications experienced by respondents as SVs included anxiety 39.1% (61/156), reliving of the event 36.5% (57/156), sleeplessness 32.1% (50/156), and guilt 28.2% (44/156). Following a stressful clinical event, 14.8% (22/149) experienced psychological distress, 14.2% (21/148) experienced physical distress, 17.7% (26/147) indicated lack of institutional support, and 15.6% (23/147) indicated turnover intentions. Enhanced resilience and growth were reported by 9.5% (14/147). Clinical and non-clinical events were reported as possible triggers for SVEs. Nearly half of respondents 49.4% (77/156) indicated feeling like an SV due to events related to COVID-19. Peer support was the highest ranked form of desired support following an SVE by 57.7% (90/156). CONCLUSIONS: RTs are involved in stressful or traumatic clinical events, resulting in psychological/physical distress and turnover intentions. The COVID-19 pandemic has had a significant impact on RTs' SVEs, highlighting the importance of addressing the SV phenomenon among this population.


Assuntos
COVID-19 , Médicos , Humanos , Pandemias , COVID-19/epidemiologia , Pessoal Técnico de Saúde , Ansiedade , Inquéritos e Questionários
2.
J Biol Chem ; 298(3): 101717, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35151689

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis and high mortality. Transforming growth factor-ß (TGF-ß) plays a key role in PDAC tumor progression, which is often associated with aberrant glycosylation. However, how PDAC cells respond to TGF-ß and the role of glycosylation therein is not well known. Here, we investigated the TGF-ß-mediated response and glycosylation changes in the PaTu-8955S (PaTu-S) cell line deficient in SMA-related and MAD-related protein 4 (SMAD4), a signal transducer of the TGF-ß signaling. PaTu-S cells responded to TGF-ß by upregulating SMAD2 phosphorylation and target gene expression. We found that TGF-ß induced expression of the mesenchymal marker N-cadherin but did not significantly affect epithelial marker E-cadherin expression. We also examined differences in N-glycans, O-glycans, and glycosphingolipid-linked glycans in PaTu-S cells upon TGF-ß stimulation. TGF-ß treatment primarily induced N-glycome aberrations involving elevated levels of branching, core fucosylation, and sialylation in PaTu-S cells, in agreement with TGF-ß-induced changes in the expression of glycosylation-associated genes. In addition, we observed differences in O glycosylation and glycosphingolipid glycosylation profiles after TGF-ß treatment, including lower levels of sialylated Tn antigen and neoexpression of globosides. Furthermore, the expression of transcription factor sex-determining region Y-related high-mobility group box 4 was upregulated upon TGF-ß stimulation, and its depletion blocked TGF-ß-induced N-glycomic changes. Thus, TGF-ß-induced N-glycosylation changes can occur in a sex-determining region Y-related high-mobility group box 4-dependent and SMAD4-independent manner in the pancreatic PaTu-S cancer cell line. Our results open up avenues to study the relevance of glycosylation in TGF-ß signaling in SMAD4-inactivated PDAC.


Assuntos
Carcinoma Ductal Pancreático , Glicoesfingolipídeos , Neoplasias Pancreáticas , Fator de Crescimento Transformador beta , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Glicoesfingolipídeos/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Polissacarídeos , Fator de Crescimento Transformador beta/metabolismo
4.
Mol Cell Proteomics ; 20: 100057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33581319

RESUMO

The choice for adjuvant chemotherapy in stage II colorectal cancer is controversial as many patients are cured by surgery alone and it is difficult to identify patients with high risk of recurrence of the disease. There is a need for better stratification of this group of patients. Mass spectrometry imaging could identify patients at risk. We report here the N-glycosylation signatures of the different cell populations in a group of stage II colorectal cancer tissue samples. The cancer cells, compared with normal epithelial cells, have increased levels of sialylation and high-mannose glycans, as well as decreased levels of fucosylation and highly branched N-glycans. When looking at the interface between cancer and its microenvironment, it seems that the cancer N-glycosylation signature spreads into the surrounding stroma at the invasive front of the tumor. This finding was more outspoken in patients with a worse outcome within this sample group.


Assuntos
Neoplasias Colorretais/metabolismo , Microambiente Tumoral , Idoso , Idoso de 80 Anos ou mais , Colo/metabolismo , Neoplasias Colorretais/patologia , Feminino , Glicômica , Glicosilação , Humanos , Mucosa Intestinal/metabolismo , Masculino , Manose/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Polissacarídeos/metabolismo , Prognóstico
6.
Immunity ; 54(1): 132-150.e9, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33271119

RESUMO

HLA class I (HLA-I) glycoproteins drive immune responses by presenting antigens to cognate CD8+ T cells. This process is often hijacked by tumors and pathogens for immune evasion. Because options for restoring HLA-I antigen presentation are limited, we aimed to identify druggable HLA-I pathway targets. Using iterative genome-wide screens, we uncovered that the cell surface glycosphingolipid (GSL) repertoire determines effective HLA-I antigen presentation. We show that absence of the protease SPPL3 augmented B3GNT5 enzyme activity, resulting in upregulation of surface neolacto-series GSLs. These GSLs sterically impeded antibody and receptor interactions with HLA-I and diminished CD8+ T cell activation. Furthermore, a disturbed SPPL3-B3GNT5 pathway in glioma correlated with decreased patient survival. We show that the immunomodulatory effect could be reversed through GSL synthesis inhibition using clinically approved drugs. Overall, our study identifies a GSL signature that inhibits immune recognition and represents a potential therapeutic target in cancer, infection, and autoimmunity.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Linfócitos T CD8-Positivos/imunologia , Glioma/imunologia , Glicoesfingolipídeos/metabolismo , Glicosiltransferases/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia/métodos , Apresentação de Antígeno , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/mortalidade , Glicoesfingolipídeos/imunologia , Antígenos HLA/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Ativação Linfocitária , Transdução de Sinais , Análise de Sobrevida , Evasão Tumoral
7.
Cell Mol Life Sci ; 78(1): 337-350, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32236654

RESUMO

Alterations in protein glycosylation in colorectal cancer (CRC) have been extensively studied using cell lines as models. However, little is known about their O-glycome and the differences in glycan biosynthesis in different cell types. To provide a better understanding of the variation in O-glycosylation phenotypes and their association with other molecular features, an in-depth O-glycosylation analysis of 26 different CRC cell lines was performed. The released O-glycans were analysed on porous graphitized carbon nano-liquid chromatography system coupled to a mass spectrometer via electrospray ionization (PGC-nano-LC-ESI-MS/MS) allowing isomeric separation as well as in-depth structural characterization. Associations between the observed glycan phenotypes with previously reported cell line transcriptome signatures were examined by canonical correlation analysis. Striking differences are observed between the O-glycomes of 26 CRC cell lines. Unsupervized principal component analysis reveals a separation between well-differentiated colon-like and undifferentiated cell lines. Colon-like cell lines are characterized by a prevalence of I-branched and sialyl Lewis x/a epitope carrying glycans, while most undifferentiated cell lines show absence of Lewis epitope expression resulting in dominance of truncated α2,6-core sialylated glycans. Moreover, the expression of glycan signatures associates with the expression of glycosyltransferases that are involved in their biosynthesis, providing a deeper insight into the regulation of glycan biosynthesis in different cell types. This untargeted in-depth screening of cell line O-glycomes paves the way for future studies exploring the role of glycosylation in CRC development and drug response leading to discovery of novel targets for the development of anti-cancer antibodies.


Assuntos
Diferenciação Celular , Glicômica/métodos , Polissacarídeos/análise , Sequência de Carboidratos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Humanos , Fenótipo , Polissacarídeos/metabolismo , Análise de Componente Principal , Espectrometria de Massas em Tandem
8.
Blood ; 136(23): 2656-2666, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32575115

RESUMO

Most patients with multiple myeloma develop a severe osteolytic bone disease. The myeloma cells secrete immunoglobulins, and the presence of monoclonal immunoglobulins in the patient's sera is an important diagnostic criterion. Here, we show that immunoglobulins isolated from myeloma patients with bone disease promote osteoclast differentiation when added to human preosteoclasts in vitro, whereas immunoglobulins from patients without bone disease do not. This effect was primarily mediated by immune complexes or aggregates. The function and aggregation behavior of immunoglobulins are partly determined by differential glycosylation of the immunoglobulin-Fc part. Glycosylation analyses revealed that patients with bone disease had significantly less galactose on immunoglobulin G (IgG) compared with patients without bone disease and also less sialic acid on IgG compared with healthy persons. Importantly, we also observed a significant reduction of IgG sialylation in serum of patients upon onset of bone disease. In the 5TGM1 mouse myeloma model, we found decreased numbers of lesions and decreased CTX-1 levels, a marker for osteoclast activity, in mice treated with a sialic acid precursor, N-acetylmannosamine (ManNAc). ManNAc treatment increased IgG-Fc sialylation in the mice. Our data support that deglycosylated immunoglobulins promote bone loss in multiple myeloma and that altering IgG glycosylation may be a therapeutic strategy to reduce bone loss.


Assuntos
Anticorpos Monoclonais/imunologia , Reabsorção Óssea/imunologia , Imunoglobulina G/imunologia , Mieloma Múltiplo/imunologia , Proteínas de Neoplasias/imunologia , Idoso , Animais , Reabsorção Óssea/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mieloma Múltiplo/patologia
9.
Mol Omics ; 16(4): 355-363, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32281997

RESUMO

Changes in glycosylation signatures of cells have been associated with pathological processes in cancer as well as infectious and autoimmune diseases. The current protocols for comprehensive analysis of N-glycomics and O-glycomics derived from cells and tissues often require a large amount of biological material. They also only allow the processing of very limited numbers of samples at a time. Here we established a workflow for sequential release of N-glycans and O-glycans based on PVDF membrane immobilization in 96-well format from 5 × 105 cells. Released glycans are reduced, desalted, purified, and reconstituted, all in 96-well format plates, without additional staining or derivatization. Glycans are then analyzed with porous graphitized carbon nano-liquid chromatography coupled to tandem mass spectrometry using negative-mode electrospray ionization, enabling the chromatographic resolution and structural elucidation of glycan species including many compositional isomers. The approach was demonstrated using glycoprotein standards and further applied to analyze the glycosylation of the murine mammary gland NMuMG cell line. The developed protocol allows the analysis of N- and O-glycans from relatively large numbers of samples in a less time consuming way with high repeatability. Inter- and intraday repeatability of the fetuin N-glycan analysis showed two median intraday coefficients of variations (CVs) of 7.6% and 8.0%, and a median interday CV of 9.8%. Median CVs of 7.9% and 8.7% for the main peaks of N- and O-glycans released from the NMuMG cell line indicate a very good repeatability. The method is applicable to purified glycoproteins as well as to biofluids and cell- or tissue-based samples.


Assuntos
Cromatografia Líquida , Glicômica/métodos , Grafite/química , Polissacarídeos/química , Espectrometria de Massas em Tandem , Animais , Análise de Dados , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Camundongos , Polissacarídeos/metabolismo , Porosidade , Fluxo de Trabalho
10.
J Biol Chem ; 295(10): 3189-3201, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31980459

RESUMO

Herpesviruses uniquely express two essential nuclear egress-regulating proteins forming a heterodimeric basic structure of the nuclear egress complex (core NEC). These core NECs serve as a hexameric lattice-structured platform for capsid docking and recruit viral and cellular NEC-associated factors that jointly exert nuclear lamina- and membrane-rearranging functions (multicomponent NEC). Here, we report the X-ray structures of ß- and γ-herpesvirus core NECs obtained through an innovative recombinant expression strategy based on NEC-hook::NEC-groove protein fusion constructs. This approach yielded the first structure of γ-herpesviral core NEC, namely the 1.56 Å structure of Epstein-Barr virus (EBV) BFRF1-BFLF2, as well as an increased resolution 1.48 Å structure of human cytomegalovirus (HCMV) pUL50-pUL53. Detailed analysis of these structures revealed that the prominent hook segment is absolutely required for core NEC formation and contributes approximately 80% of the interaction surface of the globular domains of NEC proteins. Moreover, using HCMV::EBV hook domain swap constructs, computational prediction of the roles of individual hook residues for binding, and quantitative binding assays with synthetic peptides presenting the HCMV- and EBV-specific NEC hook sequences, we characterized the unique hook-into-groove NEC interaction at various levels. Although the overall physicochemical characteristics of the protein interfaces differ considerably in these ß- and γ-herpesvirus NECs, the binding free energy contributions of residues displayed from identical positions are similar. In summary, the results of our study reveal critical details of the molecular mechanism of herpesviral NEC interactions and highlight their potential as an antiviral drug target.


Assuntos
Betaherpesvirinae/metabolismo , Gammaherpesvirinae/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Cristalografia por Raios X , Citomegalovirus/metabolismo , Células HeLa , Herpesvirus Humano 4/metabolismo , Humanos , Peptídeos/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Ressonância de Plasmônio de Superfície , Proteínas Virais/genética , Proteínas Virais/metabolismo
11.
Biochim Biophys Acta Gen Subj ; 1863(5): 960-970, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30844485

RESUMO

BACKGROUND: Multiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features. METHODS: Here, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids. RESULTS: A decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the "low-risk" ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients. CONCLUSIONS & GENERAL SIGNIFICANCE: In conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.


Assuntos
Mieloma Múltiplo/sangue , Polissacarídeos/sangue , Idoso , Feminino , Glicosilação , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Polissacarídeos/química , Polissacarídeos/metabolismo
12.
Cells ; 8(3)2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909444

RESUMO

The caudal-related homeobox protein 1 (CDX1) is a transcription factor, which is important in the development, differentiation, and homeostasis of the gut. Although the involvement of CDX genes in the regulation of the expression levels of a few glycosyltransferases has been shown, associations between glycosylation phenotypes and CDX1 mRNA expression have hitherto not been well studied. Triggered by our previous study, we here characterized the N-glycomic phenotype of 16 colon cancer cell lines, selected for their differential CDX1 mRNA expression levels. We found that high CDX1 mRNA expression associated with a higher degree of multi-fucosylation on N-glycans, which is in line with our previous results and was supported by up-regulated gene expression of fucosyltransferases involved in antenna fucosylation. Interestingly, hepatocyte nuclear factors (HNF)4A and HNF1A were, among others, positively associated with high CDX1 mRNA expression and have been previously proven to regulate antenna fucosylation. Besides fucosylation, we found that high CDX1 mRNA expression in cancer cell lines also associated with low levels of sialylation and galactosylation and high levels of bisection on N-glycans. Altogether, our data highlight a possible role of CDX1 in altering the N-glycosylation of colorectal cancer cells, which is a hallmark of tumor development.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Glicômica , Proteínas de Homeodomínio/genética , Transcriptoma/genética , Linhagem Celular Tumoral , Fucose/metabolismo , Glicosilação , Hexosaminas/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Antígenos do Grupo Sanguíneo de Lewis/química , Antígenos do Grupo Sanguíneo de Lewis/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Fenótipo , Polissacarídeos/química , Polissacarídeos/metabolismo , Análise de Componente Principal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
Thromb Haemost ; 118(12): 2134-2144, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30453343

RESUMO

BACKGROUND: C1-inhibitor (C1-inh) therapeutics can reduce neutrophil activity in various inflammatory conditions. This 'novel' anti-inflammatory effect of C1-inh is attributed to the tetrasaccharide sialyl LewisX (SLeX) present on its N-glycans. Via SLeX, C1-inh is suggested to interact with selectins on inflamed endothelium and prevent neutrophil rolling. However, C1-inh products contain plasma glycoprotein α1-antichymotrypsin (ACT) as a co-purified protein impurity. OBJECTIVE: This article investigates the contribution of ACT to the effects observed with C1-inh. MATERIALS AND METHODS: We have separated C1-inh and ACT from a therapeutic C1-inh preparation and investigated the influence of these proteins on SLeX-selectin interactions in a specific in vitro model, which makes use of rolling of SLeX-coated beads on immobilized E-selectin. RESULTS: We find that ACT and not C1-inh, shows a clear sialic acid-dependent interference in SLeX-selectin interactions, at concentrations present in C1-inh therapeutics. Furthermore, we do not find any evidence of SLeX on C1-inh using either Western blotting with anti-SLeX antibodies (CSLEX1 and KM93) or by mass spectrometric analysis of N-glycans. C1-inh reacts weakly to antibody HECA-452, which detects a broad range of selectin ligands, but ACT gives a much stronger signal, suggesting the presence of a selectin ligand on ACT. CONCLUSION: The 'novel' anti-inflammatory effects of C1-inh are unlikely due to SLeX on C1-inh and can in fact be due to SLeX-like glycans on ACT, present in C1-inh products. In view of our results, it is important to assess the role of ACT in vivo and revisit past studies performed with commercial C1-inh.


Assuntos
Anti-Inflamatórios/imunologia , Proteína Inibidora do Complemento C1/uso terapêutico , Endotélio Vascular/fisiologia , Neutrófilos/imunologia , Oligossacarídeos/uso terapêutico , Anticorpos Bloqueadores/farmacologia , Ligação Competitiva , Sistema Livre de Células , Humanos , Migração e Rolagem de Leucócitos , Microesferas , Ativação de Neutrófilo , Preparações Farmacêuticas , Selectinas/metabolismo , Antígeno Sialil Lewis X , alfa 1-Antitripsina/metabolismo
14.
Oncotarget ; 9(55): 30610-30623, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30093973

RESUMO

Proteins are routinely measured in clinical laboratories for diagnosis, prognosis and therapy monitoring. Nevertheless, both test improvements (performance) and innovations (biomarkers) are needed, and protein N-glycosylation offers a rich source of potential markers. Here, we have analyzed the total serum N-glycome in a matched case-control study (124 cases versus 124 controls) of colorectal cancer patients. The results were validated in an independent sample cohort (both 61 cases versus 61 controls) and further tested in post-operative samples of cured patients. Our results revealed significant differences between patients and controls, with increased size (antennae) and sialylation of the N-glycans in the colorectal cancer patient sera as compared to mainly di-antennary N-glycans in sera from controls. Furthermore, glycan alterations showed strong associations with cancer stage and survival: The five-year survival rate largely varied between patients with an altered serum N-glycome (46%) and an N-glycome similar to controls (87%). Importantly, the total serum N-glycome showed prognostic value beyond age and stage. This clinical glycomics study provides novel serum biomarker candidates and shows the potential of total serum N-glycans as a prognostic panel. Moreover, serum N-glycome changes reverted to a control-like profile after successful treatment as was demonstrated from pre- and post-operative samples.

15.
Glycoconj J ; 35(2): 139-160, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29680984

RESUMO

Cancer is a major cause of death in both developing and developed countries. Early detection and efficient therapy can greatly enhance survival. Aberrant glycosylation has been recognized to be one of the hallmarks of cancer as glycans participate in many cancer-associated events. Cancer-associated glycosylation changes often involve sialic acids which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the literature on changes of sialylation in serum of cancer patients. Furthermore, the methods available to measure serum and plasma sialic acids as well as possible underlying biochemical mechanisms involved in the serum sialylation changes are surveyed. In general, total serum sialylation levels appear to be increased with various malignancies and show a potential for clinical applications, especially for disease monitoring and prognosis. In addition to overall sialic acid levels and the amount of sialic acid per total protein, glycoprofiling of specific cancer-associated glycoproteins, acute phase proteins and immunoglobulins in serum as well as the measurements of sialylation-related enzymes such as sialidases and sialyltransferases have been reported for early detection of cancer, assessing cancer progression and improving prognosis of cancer patients. Moreover, sialic-acid containing glycan antigens such as CA19-9, sialyl Lewis X and sialyl Tn on serum proteins have also displayed their value in cancer diagnosis and management whereby increased levels of these factors positively correlated with metastasis or poor prognosis.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias/sangue , Processamento de Proteína Pós-Traducional , Ácidos Siálicos/metabolismo , Humanos , Ácidos Siálicos/sangue
16.
Mol Cell Proteomics ; 17(6): 1225-1238, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29233911

RESUMO

Human C1-inhibitor (C1-Inh) is a serine protease inhibitor and the major regulator of the contact activation pathway as well as the classical and lectin complement pathways. It is known to be a highly glycosylated plasma glycoprotein. However, both the structural features and biological role of C1-Inh glycosylation are largely unknown. Here, we performed for the first time an in-depth site-specific N- and O-glycosylation analysis of C1-Inh combining various mass spectrometric approaches, including C18-porous graphitized carbon (PGC)-LC-ESI-QTOF-MS/MS applying stepping-energy collision-induced dissociation (CID) and electron-transfer dissociation (ETD). Various proteases were applied, partly in combination with PNGase F and exoglycosidase treatment, in order to analyze the (glyco)peptides. The analysis revealed an extensively O-glycosylated N-terminal region. Five novel and five known O-glycosylation sites were identified, carrying mainly core1-type O-glycans. In addition, we detected a heavily O-glycosylated portion spanning from Thr82-Ser121 with up to 16 O-glycans attached. Likewise, all known six N-glycosylation sites were covered and confirmed by this site-specific glycosylation analysis. The glycoforms were in accordance with results on released N-glycans by MALDI-TOF/TOF-MS/MS. The comprehensive characterization of C1-Inh glycosylation described in this study will form the basis for further functional studies on the role of these glycan modifications.


Assuntos
Proteína Inibidora do Complemento C1/metabolismo , Glicosilação , Humanos , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem
17.
Sci Rep ; 7(1): 16623, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192278

RESUMO

To characterise pancreatic cancer cells from different sources which are used as model systems to study the metastatic behaviour in pancreatic ductal adenocarcinoma (PDAC), we compared the N-glycan imprint of four PDAC cells which were previously shown to differ in their galectin-4 expression and metastatic potential in vivo. Next to the sister cell lines Pa-Tu-8988S and Pa-Tu-8988T, which were isolated from the same liver metastasis of a PDAC, this included two primary PDAC cell cultures, PDAC1 and PDAC2. Additionally, we extended the N-glycan profiling to a normal, immortalized pancreatic duct cell line. Our results revealed major differences in the N-glycosylation of the different PDAC cells as well as compared to the control cell line, suggesting changes of the N-glycosylation in PDAC. The N-glycan profiles of the PDAC cells, however, differed vastly as well and demonstrate the diversity of PDAC model systems, which ultimately affects the interpretation of functional studies. The results from this study form the basis for further biological evaluation of the role of protein glycosylation in PDAC and highlight that conclusions from one cell line cannot be generalised, but should be regarded in the context of the corresponding phenotype.


Assuntos
Glicoproteínas/metabolismo , Metaboloma , Metabolômica , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Glicosilação , Humanos , Metabolômica/métodos , Camundongos , Polissacarídeos , Processamento de Proteína Pós-Traducional , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
18.
Stem Cells Dev ; 26(21): 1552-1565, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28891400

RESUMO

The aim of stem cell therapy after cardiac injury is to replace damaged cardiac tissue. Human cardiac progenitor cells (CPCs) represent an interesting cell population for clinical strategies to treat cardiac disease and human CPC-specific antibodies would aid in the clinical implementation of cardiac progenitor-based cell therapy. However, the field of CPC biology suffers from the lack of human CPC-specific markers. Therefore, we raised a panel of monoclonal antibodies (mAb) against CPCs. Of this panel of antibodies, we show that mAb C1096 recognizes a progenitor-like population in the fetal and adult human heart and partially colocalize with reported CPC populations in vitro. Furthermore, mAb C1096 can be used to isolate a multipotent progenitor population from human heart tissue. Interestingly, the two lead candidates, mAb C1096 and mAb C19, recognize glycosylated residues on PECAM1 (platelet and endothelial cell adhesion molecule 1) and GRP78, respectively, and de-N-glycosylation significantly abolishes their binding. Thereby, this report describes new clinically applicable antibodies against human CPCs, and for the first time demonstrates the importance of glycosylated residues as CPCs specific markers.


Assuntos
Células-Tronco Embrionárias/citologia , Proteínas de Choque Térmico/imunologia , Mioblastos Cardíacos/citologia , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Superfície/imunologia , Células Cultivadas , Células-Tronco Embrionárias/imunologia , Chaperona BiP do Retículo Endoplasmático , Glicosilação , Humanos , Mioblastos Cardíacos/imunologia , Processamento de Proteína Pós-Traducional
19.
J Proteome Res ; 16(1): 156-169, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27351377

RESUMO

The human acute monocytic leukemia cell line THP-1 is widely used as an in vitro phagocytic cell model because it exhibits several immune properties similar to native monocyte-derived macrophages. In this study, we investigated the alteration of N- and O-linked glycans as well as glycosphingolipids, during THP-1 differentiation, combining mass spectrometry, flow cytometry, and quantitative real-time PCR. Mass spectrometry revealed that macrophage differentiation led to a marked upregulation of expression of GM3 ganglioside as well as an increase in complex-type structures, particularly triantennary glycans, occurring at the expense of high-mannose N-glycans. Moreover, we observed a slight decrease in the proportion of multifucosylated N-glycans and α2,6-sialylation. The uncovered changes in glycosylation correlated with variations of gene expression of relevant glycosyltransferases and glycosidases including sialyltransferases, ß-N-acetylglucosaminyltransferases, fucosyltransferases, and neuraminidase. Furthermore, using flow cytometry and antibodies directed against glycan structures, we confirmed that the alteration of glycosylation occurs at the cell surface of THP-1 macrophage-like cells. Altogether, we established that macrophagic maturation of THP-1 induces dramatic modifications of the surface glycosylation pattern that may result in differential interaction of monocytic and macrophagic THP-1 with immune or bacterial lectins.


Assuntos
Diferenciação Celular/imunologia , Glicoesfingolipídeos/química , Macrófagos/química , Monócitos/química , Polissacarídeos/química , Configuração de Carboidratos , Sequência de Carboidratos , Linhagem Celular , Fucosiltransferases/genética , Fucosiltransferases/imunologia , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/imunologia , Regulação da Expressão Gênica , Glicoesfingolipídeos/imunologia , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/imunologia , Humanos , Macrófagos/citologia , Macrófagos/imunologia , Manose/química , Manose/imunologia , Monócitos/citologia , Monócitos/imunologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia , Neuraminidase/genética , Neuraminidase/imunologia , Polissacarídeos/imunologia , Ácidos Siálicos/química , Ácidos Siálicos/imunologia , Sialiltransferases/genética , Sialiltransferases/imunologia
20.
Methods Mol Biol ; 1503: 185-196, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27743367

RESUMO

The current protocols for glycomic analysis of cells often require a large quantity of material (5-20 million cells). In order to analyze the N-glycosylation from small amounts of cells (≤1 million) as obtained from, for example, primary cell lines or cell sorting, and in a higher throughput approach, we set up a robust 96-well format PVDF-membrane based N-glycan release protocol followed by linkage-specific sialic acid stabilization, cleanup, and MALDI-TOF-MS analysis. We further evaluated the influence of PNGase F incubation time on the N-glycan profile.


Assuntos
Glicômica/métodos , Polissacarídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Esterificação , Glicosilação , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ácido N-Acetilneuramínico/química , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polissacarídeos/isolamento & purificação , Polissacarídeos/metabolismo , Extração em Fase Sólida/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...