Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600097

RESUMO

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Assuntos
Neurônios , Proteômica , Camundongos , Animais , Humanos , Neurônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Autofagia/fisiologia , Homeostase
2.
Front Neurol ; 13: 891536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899268

RESUMO

In the vestibular periphery, transmission via conventional synaptic boutons is supplemented by post-synaptic calyceal endings surrounding Type I hair cells. This review focusses on the multiple modes of communication between these receptors and their enveloping calyces as revealed by simultaneous dual-electrode recordings. Classic orthodromic transmission is accompanied by two forms of bidirectional communication enabled by the extensive cleft between the Type I hair cell and its calyx. The slowest cellular communication low-pass filters the transduction current with a time constant of 10-100 ms: potassium ions accumulate in the synaptic cleft, depolarizing both the hair cell and afferent to potentials greater than necessary for rapid vesicle fusion in the receptor and potentially triggering action potentials in the afferent. On the millisecond timescale, conventional glutamatergic quantal transmission occurs when hair cells are depolarized to potentials sufficient for calcium influx and vesicle fusion. Depolarization also permits a third form of transmission that occurs over tens of microseconds, resulting from the large voltage- and ion-sensitive cleft-facing conductances in both the hair cell and the calyx that are open at their resting potentials. Current flowing out of either the hair cell or the afferent divides into the fraction flowing across the cleft into its cellular partner, and the remainder flowing out of the cleft and into the surrounding fluid compartment. These findings suggest multiple biophysical bases for the extensive repertoire of response dynamics seen in the population of primary vestibular afferent fibers. The results further suggest that evolutionary pressures drive selection for the calyx afferent.

3.
Front Neurol ; 12: 680044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122320

RESUMO

A variety of stimuli activating vestibular end organs, including sinusoidal galvanic vestibular stimulation, whole body rotation and tilt, and head flexion have been shown to evoke significant changes in blood pressure (BP) and heart rate (HR). While a role for the vertical semicircular canals in altering autonomic activity has been hypothesized, studies to-date attribute the evoked BP and HR responses to the otolith organs. The present study determined whether unilateral activation of the posterior (PC) or anterior (AC) semicircular canal is sufficient to elicit changes in BP and/or HR. The study employed frequency-modulated pulsed infrared radiation (IR: 1,863 nm) directed via optical fibers to PC or AC of adult male Long-Evans rats. BP and HR changes were detected using a small-animal single pressure telemetry device implanted in the femoral artery. Eye movements evoked during IR of the vestibular endorgans were used to confirm the stimulation site. We found that sinusoidal IR delivered to either PC or AC elicited a rapid decrease in BP and HR followed by a stimulation frequency-matched modulation. The magnitude of the initial decrements in HR and BP did not correlate with the energy of the suprathreshold stimulus. This response pattern was consistent across multiple trials within an experimental session, replicable, and in most animals showed no evidence of habituation or an additive effect. Frequency modulated electrical current delivered to the PC and IR stimulation of the AC, caused decrements in HR and BP that resembled those evoked by IR of the PC. Frequency domain heart rate variability assessment revealed that, in most subjects, IR stimulation increased the low frequency (LF) component and decreased the high frequency (HF) component, resulting in an increase in the LF/HF ratio. This ratio estimates the relative contributions of sympathetic nervous system (SNS) and parasympathetic nervous system (PNS) activities. An injection of atropine, a muscarinic cholinergic receptor antagonist, diminished the IR evoked changes in HR, while the non-selective beta blocker propranolol eliminated changes in both HR and BP. This study provides direct evidence that activation of a single vertical semicircular canal is sufficient to activate and modulate central pathways that control HR and BP.

4.
J Gerontol A Biol Sci Med Sci ; 75(12): 2471-2480, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-32617555

RESUMO

Balance impairment and falls are among the most prevalent and morbid conditions affecting older adults. A critical contributor to balance and gait function is the vestibular system; however, there remain substantial knowledge gaps regarding age-related vestibular loss and its contribution to balance impairment and falls in older adults. Given these knowledge gaps, the National Institute on Aging and the National Institute on Deafness and Other Communication Disorders convened a multidisciplinary workshop in April 2019 that brought together experts from a wide array of disciplines, such as vestibular physiology, neuroscience, movement science, rehabilitation, and geriatrics. The goal of the workshop was to identify key knowledge gaps on vestibular function and balance control in older adults and develop a research agenda to make substantial advancements in the field. This article provides a report of the proceedings of this workshop. Three key questions emerged from the workshop, specifically: (i) How does aging impact vestibular function?; (ii) How do we know what is the contribution of age-related vestibular impairment to an older adult's balance problem?; and more broadly, (iii) Can we develop a nosology of balance impairments in older adults that can guide clinical practice? For each of these key questions, the current knowledge is reviewed, and the critical knowledge gaps and research strategies to address them are discussed. This document outlines an ambitious 5- to 10-year research agenda for increasing knowledge related to vestibular impairment and balance control in older adults, with the ultimate goal of linking this knowledge to more effective treatment.


Assuntos
Envelhecimento/fisiologia , Equilíbrio Postural/fisiologia , Doenças Vestibulares/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Estados Unidos
5.
J Physiol ; 598(4): 853-889, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31623011

RESUMO

KEY POINTS: In central regions of vestibular semicircular canal epithelia, the [K+ ] in the synaptic cleft ([K+ ]c ) contributes to setting the hair cell and afferent membrane potentials; the potassium efflux from type I hair cells results from the interdependent gating of three conductances. Elevation of [K+ ]c occurs through a calcium-activated potassium conductance, GBK , and a low-voltage-activating delayed rectifier, GK(LV) , that activates upon elevation of [K+ ]c . Calcium influx that enables quantal transmission also activates IBK , an effect that can be blocked internally by BAPTA, and externally by a CaV 1.3 antagonist or iberiotoxin. Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, suggesting that the outward rectification observed for GK(LV) may result largely from a potassium-sensitive relief of Ca2+ inactivation of the channel pore selectivity filter. Potassium sensitivity of hair cell and afferent conductances allows three modes of transmission: quantal, ion accumulation and resistive coupling to be multiplexed across the synapse. ABSTRACT: In the vertebrate nervous system, ions accumulate in diffusion-limited synaptic clefts during ongoing activity. Such accumulation can be demonstrated at large appositions such as the hair cell-calyx afferent synapses present in central regions of the turtle vestibular semicircular canal epithelia. Type I hair cells influence discharge rates in their calyx afferents by modulating the potassium concentration in the synaptic cleft, [K+ ]c , which regulates potassium-sensitive conductances in both hair cell and afferent. Dual recordings from synaptic pairs have demonstrated that, despite a decreased driving force due to potassium accumulation, hair cell depolarization elicits sustained outward currents in the hair cell, and a maintained inward current in the afferent. We used kinetic and pharmacological dissection of the hair cell conductances to understand the interdependence of channel gating and permeation in the context of such restricted extracellular spaces. Hair cell depolarization leads to calcium influx and activation of a large calcium-activated potassium conductance, GBK , that can be blocked by agents that disrupt calcium influx or buffer the elevation of [Ca2+ ]i , as well as by the specific KCa 1.1 blocker iberiotoxin. Efflux of K+ through GBK can rapidly elevate [K+ ]c , which speeds the activation and slows the inactivation and deactivation of a second potassium conductance, GK(LV) . Elevation of [K+ ]c or chelation of [Ca2+ ]c linearizes the GK(LV) steady-state I-V curve, consistent with a K+ -dependent relief of Ca2+ inactivation of GK(LV) . As a result, this potassium-sensitive hair cell conductance pairs with the potassium-sensitive hyperpolarization-activated cyclic nucleotide-gated channel (HCN) conductance in the afferent and creates resistive coupling at the synaptic cleft.


Assuntos
Células Ciliadas Vestibulares/fisiologia , Potássio/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Tartarugas/fisiologia , Animais , Sinalização do Cálcio , Íons
6.
J Neurophysiol ; 122(2): 512-524, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31166818

RESUMO

Anterograde and retrograde tract tracing were combined with neurotransmitter and modulator immunolabeling to identify the chemical anatomy of vestibular nuclear neurons with direct projections to the solitary nucleus in rats. Direct, sparsely branched but highly varicose axonal projections from neurons in the caudal vestibular nuclei to the solitary nucleus were observed. The vestibular neurons giving rise to these projections were predominantly located in ipsilateral medial vestibular nucleus. The cell bodies were intensely glutamate immunofluorescent, and their axonal processes contained vesicular glutamate transporter 2, supporting the interpretation that the cells utilize glutamate for neurotransmission. The glutamate-immunofluorescent, retrogradely filled vestibular cells also contained the neuromodulator imidazoleacetic acid ribotide, which is an endogenous CNS ligand that participates in blood pressure regulation. The vestibulo-solitary neurons were encapsulated by axo-somatic GABAergic terminals, suggesting that they are under tight inhibitory control. The results establish a chemoanatomical basis for transient vestibular activation of the output pathways from the caudal and intermediate regions of the solitary nucleus. In this way, changes in static head position and movement of the head in space may directly influence heart rate, blood pressure, respiration, as well as gastrointestinal motility. This would provide one anatomical explanation for the synchronous heart rate and blood pressure responses observed after peripheral vestibular activation, as well as disorders ranging from neurogenic orthostatic hypotension, postural orthostatic tachycardia syndrome, and vasovagal syncope to the nausea and vomiting associated with motion sickness.NEW & NOTEWORTHY Vestibular neurons with direct projections to the solitary nucleus utilize glutamate for neurotransmission, modulated by imidazoleacetic acid ribotide. This is the first direct demonstration of the chemical neuroanatomy of the vestibulo-solitary pathway.


Assuntos
Sistema Nervoso Autônomo/fisiologia , Ácido Glutâmico/metabolismo , Imidazóis/metabolismo , Ribosemonofosfatos/metabolismo , Núcleo Solitário/fisiologia , Núcleos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiologia , Animais , Sistema Nervoso Autônomo/metabolismo , Sistema Nervoso Autônomo/fisiopatologia , Doenças do Sistema Nervoso Autônomo/metabolismo , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Long-Evans , Doenças Vestibulares/metabolismo , Doenças Vestibulares/fisiopatologia , Vestíbulo do Labirinto/fisiopatologia
7.
Exp Brain Res ; 234(10): 2747-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27411812

RESUMO

Imidazole-4-acetic acid-ribotide (IAARP) is a putative neurotransmitter/modulator and an endogenous regulator of sympathetic drive, notably systemic blood pressure, through binding to imidazoline receptors. IAARP is present in neurons and processes throughout the CNS, but is particularly prevalent in regions that are involved in blood pressure control. The goal of this study was to determine whether IAARP is present in neurons in the caudal vestibular nuclei that participate in the vestibulo-sympathetic reflex (VSR) pathway. This pathway is important in modulating blood pressure upon changes in head position with regard to gravity, as occurs when humans rise from a supine position and when quadrupeds climb or rear. Sinusoidal galvanic vestibular stimulation was used to activate the VSR and cfos gene expression in VSR pathway neurons of rats. These subjects had previously received a unilateral FluoroGold tracer injection in the rostral or caudal ventrolateral medullary region. The tracer was transported retrogradely and filled vestibular neuronal somata with direct projections to the injected region. Brainstem sections through the caudal vestibular nuclei were immunostained to visualize FluoroGold, cFos protein, IAARP and glutamate immunofluorescence. The results demonstrate that IAARP is present in vestibular neurons of the VSR pathway, where it often co-localizes with intense glutamate immunofluorescence. The co-localization of IAARP and intense glutamate immunofluorescence in VSR neurons may represent an efficient chemoanatomical configuration, allowing the vestibular system to rapidly up- and down-modulate the activity of presympathetic neurons in the ventrolateral medulla, thereby altering blood pressure.


Assuntos
Imidazóis/metabolismo , Bulbo/citologia , Neurônios/metabolismo , Ribosemonofosfatos/metabolismo , Sistema Nervoso Simpático/metabolismo , Núcleos Vestibulares/citologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Lateralidade Funcional , Ácido Glutâmico/metabolismo , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Long-Evans , Reflexo/fisiologia , Estilbamidinas/metabolismo
8.
Front Neuroanat ; 10: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26903817

RESUMO

The vestibulo-sympathetic reflex (VSR) actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The VSR pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively). The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the VSR pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation (GVS) was employed to activate these pathways. Central vestibular neurons of the VSR were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified VSR pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. VSR pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the GABAergic VSR pathway neurons showed a target preference, projecting predominantly to CVLM. These data provide the first demonstration of two disparate chemoanatomic VSR pathways.

9.
Front Neurol ; 6: 204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441823

RESUMO

Protein citrullination is a calcium-driven post-translational modification proposed to play a causative role in the neurodegenerative disorders of Alzheimer's disease, multiple sclerosis (MS), and prion disease. Citrullination can result in the formation of antigenic epitopes that underlie pathogenic autoimmune responses. This phenomenon, which is best understood in rheumatoid arthritis, may play a role in the chronic dysfunction following traumatic brain injury (TBI). Despite substantial evidence of aberrations in calcium signaling following TBI, there is little understanding of how TBI alters citrullination in the brain. The present investigation addressed this gap by examining the effects of TBI on the distribution of protein citrullination and on the specific cell types involved. Immunofluorescence revealed that controlled cortical impact in rats profoundly up--regulated protein citrullination in the cerebral cortex, external capsule, and hippocampus. This response was exclusively seen in astrocytes; no such effects were observed on the status of protein citrullination in neurons, oligodendrocytes or microglia. Further, proteomic analyses demonstrated that the effects of TBI on citrullination were confined to a relatively small subset of neural proteins. Proteins most notably affected were those also reported to be citrullinated in other disorders, including prion disease and MS. In vivo findings were extended in an in vitro model of simulated TBI employing normal human astrocytes. Pharmacologically induced calcium excitotoxicity was shown to activate the citrullination and breakdown of glial fibrillary acidic protein, producing a novel candidate TBI biomarker and potential target for autoimmune recognition. In summary, these findings demonstrate that the effects of TBI on protein citrullination are selective with respect to brain region, cell type, and proteins modified, and may contribute to a role for autoimmune dysfunction in chronic pathology following TBI.

10.
J Neurophysiol ; 113(10): 3827-35, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25878150

RESUMO

Spontaneous and stimulus-evoked excitatory postsynaptic currents (EPSCs) were recorded in calyx nerve terminals from the turtle vestibular lagena to quantify key attributes of quantal transmission at this synapse. On average, EPSC events had a magnitude of ∼ 42 pA, a rise time constant of τ(0) ∼ 229 µs, decayed to baseline with a time constant of τ(R) ∼ 690 µs, and carried ∼ 46 fC of charge. Individual EPSCs varied in magnitude and decay time constant. Variability in the EPSC decay time constant was hair cell dependent and due in part to a slow protraction of the EPSC in some cases. Variability in EPSC size was well described by an integer summation of unitary quanta, with each quanta of glutamate gating a unitary postsynaptic current of ∼ 23 pA. The unitary charge was ∼ 26 fC for EPSCs with a simple exponential decay and increased to ∼ 48 fC for EPSCs exhibiting a slow protraction. The EPSC magnitude and the number of simultaneous unitary quanta within each event increased with presynaptic stimulus intensity. During tonic hair cell depolarization, both the EPSC magnitude and event rate exhibited adaptive run down over time. Present data from a reptilian calyx are remarkably similar to noncalyceal vestibular synaptic terminals in diverse species, indicating that the skewed EPSC size distribution and multiquantal release might be an ancestral property of inner ear ribbon synapses.


Assuntos
Células Ciliadas Auditivas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Vestíbulo do Labirinto/citologia , Animais , Biofísica , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Técnicas In Vitro , Técnicas de Patch-Clamp , Probabilidade , Tartarugas
11.
Proc Natl Acad Sci U S A ; 111(14): 5421-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706862

RESUMO

Present data support the conclusion that protons serve as an important neurotransmitter to convey excitatory stimuli from inner ear type I vestibular hair cells to postsynaptic calyx nerve terminals. Time-resolved pH imaging revealed stimulus-evoked extrusion of protons from hair cells and a subsequent buildup of [H(+)] within the confined chalice-shaped synaptic cleft (ΔpH ∼ -0.2). Whole-cell voltage-clamp recordings revealed a concomitant nonquantal excitatory postsynaptic current in the calyx terminal that was causally modulated by cleft acidification. The time course of [H(+)] buildup limits the speed of this intercellular signaling mechanism, but for tonic signals such as gravity, protonergic transmission offers a significant metabolic advantage over quantal excitatory postsynaptic currents--an advantage that may have driven the proliferation of postsynaptic calyx terminals in the inner ear vestibular organs of contemporary amniotes.


Assuntos
Células Ciliadas Vestibulares/metabolismo , Neurotransmissores/metabolismo , Prótons
12.
Front Neurol ; 5: 37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24772102

RESUMO

Sinusoidal galvanic vestibular stimulation (sGVS) induces oscillations in blood pressure (BP) and heart rate (HR), i.e., vasovagal oscillations, as well as transient decreases in BP and HR, i.e., vasovagal responses, in isoflurane-anesthetized rats. We determined the characteristics of the vasovagal oscillations, assessed their role in the generation of vasovagal responses, and determined whether they could be induced by monaural as well as by binaural sGVS and by oscillation in pitch. Wavelet analyses were used to determine the power distributions of the waveforms. Monaural and binaural sGVS and pitch generated vasovagal oscillations at the frequency and at twice the frequency of stimulation. Vasovagal oscillations and vasovagal responses were maximally induced at low stimulus frequencies (0.025-0.05 Hz). The oscillations were attenuated and the responses were rarely induced at higher stimulus frequencies. Vasovagal oscillations could occur without induction of vasovagal responses, but vasovagal responses were always associated with a vasovagal oscillation. We posit that the vasovagal oscillations originate in a low frequency band that, when appropriately activated by strong sympathetic stimulation, can generate vasovagal oscillations as a precursor for vasovagal responses and syncope. We further suggest that the activity responsible for the vasovagal oscillations arises in low frequency, otolith neurons with orientation vectors close to the vertical axis of the head. These neurons are likely to provide critical input to the vestibulo-sympathetic reflex to increase BP and HR upon changes in head position relative to gravity, and to contribute to the production of vasovagal oscillations and vasovagal responses and syncope when the baroreflex is inactivated.

13.
J Comp Neurol ; 522(9): 2053-74, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24323841

RESUMO

Changes in head position and posture are detected by the vestibular system and are normally followed by rapid modifications in blood pressure. These compensatory adjustments, which allow humans to stand up without fainting, are mediated by integration of vestibular system pathways with blood pressure control centers in the ventrolateral medulla. Orthostatic hypotension can reflect altered activity of this neural circuitry. Vestibular sensory input to the vestibulo-sympathetic pathway terminates on cells in the vestibular nuclear complex, which in turn project to brainstem sites involved in the regulation of cardiovascular activity, including the rostral and caudal ventrolateral medullary regions (RVLM and CVLM, respectively). In the present study, sinusoidal galvanic vestibular stimulation was used to activate this pathway, and activated neurons were identified through detection of c-Fos protein. The retrograde tracer Fluoro-Gold was injected into the RVLM or CVLM of these animals, and immunofluorescence studies of vestibular neurons were conducted to visualize c-Fos protein and Fluoro-Gold concomitantly. We observed activated projection neurons of the vestibulo-sympathetic reflex pathway in the caudal half of the spinal, medial, and parvocellular medial vestibular nuclei. Approximately two-thirds of the cells were ipsilateral to Fluoro-Gold injection sites in both the RVLM and CVLM, and the remainder were contralateral. As a group, cells projecting to the RVLM were located slightly rostral to those with terminals in the CVLM. Individual activated projection neurons were multipolar, globular, or fusiform in shape. This study provides the first direct demonstration of the central vestibular neurons that mediate the vestibulo-sympathetic reflex.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Reflexo/fisiologia , Vias Aferentes/citologia , Vias Aferentes/fisiologia , Animais , Estimulação Elétrica , Imunofluorescência , Corantes Fluorescentes , Lateralidade Funcional/fisiologia , Masculino , Bulbo/citologia , Bulbo/fisiologia , Técnicas de Rastreamento Neuroanatômico , Fotomicrografia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Long-Evans , Estilbamidinas , Nervo Vestibular/citologia , Nervo Vestibular/fisiologia , Núcleos Vestibulares/citologia , Núcleos Vestibulares/fisiologia
14.
FASEB J ; 27(7): 2564-72, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23504712

RESUMO

Vasovagal responses (VVRs) are characterized by transient drops in blood pressure (BP) and heart rate (HR) and increased amplitude of low-frequency oscillations in the Mayer wave frequency range. Typical VVRs were induced in anesthetized, male, Long-Evans rats by sinusoidal galvanic vestibular stimulation (sGVS). VVRs were also produced by single sinusoids that transiently increased BP and HR, by 70-90° nose-up tilts, and by 60° tilts of the gravitoinertial acceleration vector using translation while rotating (TWR). The average power of the BP signal in the Mayer wave range increased substantially when tilts were >70° (0.91 g), i.e., when linear accelerations in the x-z plane were ≥0.9-1.0 g. The standard deviations of the wavelet-filtered BP signals during tilt and TWR overlaid when they were normalized to 1 g. Thus, the amplitudes of the Mayer waves coded the magnitude of the linear acceleration ≥1 g acting on the head and body, and the average power in this frequency range was associated with the generation of VVRs. These data show that VVRs are a natural outcome of stimulation of the vestibulosympathetic reflex and are not a disease. The results also demonstrate the usefulness of the rat as a small animal model for studying human VVRs.


Assuntos
Pressão Sanguínea/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Frequência Cardíaca/fisiologia , Modelos Animais , Aceleração , Animais , Fenômenos Biomecânicos , Estimulação Elétrica , Humanos , Masculino , Fotopletismografia , Postura/fisiologia , Ratos , Ratos Long-Evans , Reflexo/fisiologia , Rotação , Sistema Nervoso Simpático/fisiologia , Vestíbulo do Labirinto/fisiologia
15.
Anat Rec (Hoboken) ; 295(11): 2000-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23044714

RESUMO

This article reviews the structure function of the vestibular system and its pathology with respect to requirements for the design and construction of a functional vestibular prosthesis. The ultimate goal of a vestibular prosthesis is to restore balance and equilibrium through direct activation of vestibular nerve fibers. An overview of the peripheral and central vestibular systems that highlights their most important functional aspects re: the design of a prosthesis is provided. Namely, the peripheral labyrinth faithfully transduces head motion and gravity in both the time and frequency domains. These signals are described in hopes that they may be prosthetically replicated. The peripheral and central connections of the vestibular nerve are also discussed in detail, as are the vestibular nuclei in the brainstem that receive VIIIth nerve innervation. Lastly, the functional effector pathways of the vestibular system, including the vestibulo-ocular, vestibulo-spinal, vestibulo-colic, vestibulo-autonomic, and vestibular efferent innervation of the labyrinth are reviewed.


Assuntos
Próteses e Implantes , Vestíbulo do Labirinto/anatomia & histologia , Vestíbulo do Labirinto/fisiologia , Animais , Humanos
17.
J Neurosci ; 32(22): 7585-93, 2012 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-22649237

RESUMO

Parkinson's disease (PD) is characterized pathologically by the formation of ubiquitin and α-synuclein (α-syn)-containing inclusions (Lewy bodies), dystrophic dopamine (DA) terminals, and degeneration of midbrain DA neurons. The precise molecular mechanisms underlying these pathological features remain elusive. Accumulating evidence has implicated dysfunctional autophagy, the cell self-digestion and neuroprotective pathway, as one of the pathogenic systems contributing to the development of idiopathic PD. Here we characterize autophagy-deficient mouse models and provide in vivo evidence for the potential role that impaired autophagy plays in pathogenesis associated with PD. Cell-specific deletion of essential autophagy gene Atg7 in midbrain DA neurons causes delayed neurodegeneration, accompanied by late-onset locomotor deficits. In contrast, Atg7-deficient DA neurons in the midbrain exhibit early dendritic and axonal dystrophy, reduced striatal dopamine content, and the formation of somatic and dendritic ubiquitinated inclusions in DA neurons. Furthermore, whole-brain-specific loss of Atg7 leads to presynaptic accumulation of α-syn and LRRK2 proteins, which are encoded by two autosomal dominantly inherited PD-related genes. Our results suggest that disrupted autophagy may be associated with enhanced levels of endogenous α-syn and LRRK2 proteins in vivo. Our findings implicate dysfunctional autophagy as one of the failing cellular mechanisms involved in the pathogenesis of idiopathic PD.


Assuntos
Autofagia/fisiologia , Neurônios Dopaminérgicos/patologia , Efrina-B1/metabolismo , Degeneração Neural/patologia , Terminações Pré-Sinápticas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Encéfalo/patologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão/métodos , Dendritos/patologia , Modelos Animais de Doenças , Dopamina/metabolismo , Embrião de Mamíferos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/genética , Corpos de Inclusão/genética , Corpos de Inclusão/patologia , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Atividade Motora/genética , Transtornos dos Movimentos/genética , Degeneração Neural/etiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Nestina , Terminações Pré-Sinápticas/patologia , Terminações Pré-Sinápticas/ultraestrutura , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Ubiquitina/metabolismo
18.
Acta Biol Hung ; 63 Suppl 1: 5-18, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22453739

RESUMO

We have previously demonstrated that imidazole-4-acetic acid-ribotide (IAA-RP) is present in the mammalian brain and is an endogenous ligand at imidazoline binding sites. In the present study, we used a polyclonal antiserum to visualize IAA-RP-containing neurons in the rat caudoputamen. We observe IAA-RP-immunostained neurons scattered throughout the dorsal and ventral striatum. Most of these cells co-localize GABA, but none are parvalbumin-immunoreactive. In contrast, approximately 50% of the calbindin D28k-immunopositive striatal neurons co-localize IAA-RP. Electrophysiological studies using corticostriatal slices demonstrated that bath application of IAA-RP reversibly depresses the synaptically mediated component of field potentials recorded in the striatum by stimulation of cortical axons. Addition of competitive glutamate receptor antagonists completely blocks the response, confirming its association with glutamatergic transmission. Using paired-pulse stimuli, IAA-RP was shown to exert, at least in part, a presynaptic effect, but blockade of GABAA receptor-mediated transmission did not alter the response. Lastly, we show that this effect is attributable to imidazoline-1 receptors, and not to α2 adrenergic receptors. Since IAA-RP is an endogenous central regulator of blood pressure, and cardiovascular dysfunction is a common symptom associated with Parkinson's disease (PD), we speculate that IAA-RP-related abnormalities may underlie some of the autonomic dysfunction that occurs in PD.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Gânglios da Base/metabolismo , Imidazóis/metabolismo , Atividade Motora , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ribosemonofosfatos/metabolismo , Animais , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/fisiopatologia , Calbindina 1 , Calbindinas , Estimulação Elétrica , Potenciais Evocados , Antagonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Receptores de GABA-A/farmacologia , Receptores de Imidazolinas/metabolismo , Ligantes , Masculino , Microscopia de Fluorescência , Inibição Neural , Neurônios/efeitos dos fármacos , Doença de Parkinson/fisiopatologia , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Transmissão Sináptica , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismo
19.
Front Neurol ; 3: 4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22403566

RESUMO

The vestibular system sends projections to brainstem autonomic nuclei that modulate heart rate and blood pressure in response to changes in head and body position with regard to gravity. Consistent with this, binaural sinusoidally modulated galvanic vestibular stimulation (sGVS) in humans causes vasoconstriction in the legs, while low frequency (0.02-0.04 Hz) sGVS causes a rapid drop in heart rate and blood pressure in anesthetized rats. We have hypothesized that these responses occur through activation of vestibulo-sympathetic pathways. In the present study, c-Fos protein expression was examined in neurons of the vestibular nuclei and rostral ventrolateral medullary region (RVLM) that were activated by low frequency sGVS. We found c-Fos-labeled neurons in the spinal, medial, and superior vestibular nuclei (SpVN, MVN, and SVN, respectively) and the parasolitary nucleus. The highest density of c-Fos-positive vestibular nuclear neurons was observed in MVN, where immunolabeled cells were present throughout the rostro-caudal extent of the nucleus. c-Fos expression was concentrated in the parvocellular region and largely absent from magnocellular MVN. c-Fos-labeled cells were scattered throughout caudal SpVN, and the immunostained neurons in SVN were restricted to a discrete wedge-shaped area immediately lateral to the IVth ventricle. Immunofluorescence localization of c-Fos and glutamate revealed that approximately one third of the c-Fos-labeled vestibular neurons showed intense glutamate-like immunofluorescence, far in excess of the stain reflecting the metabolic pool of cytoplasmic glutamate. In the RVLM, which receives a direct projection from the vestibular nuclei and sends efferents to preganglionic sympathetic neurons in the spinal cord, we observed an approximately threefold increase in c-Fos labeling in the sGVS-activated rats. We conclude that localization of c-Fos protein following sGVS is a reliable marker for sGVS-activated neurons of the vestibulo-sympathetic pathway.

20.
Exp Brain Res ; 210(1): 45-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21374078

RESUMO

Blood pressure (BP) and heart rate (HR) were studied in isoflurane-anesthetized Long-Evans rats during sinusoidal galvanic vestibular stimulation (sGVS) and sinusoidal oscillation in pitch to characterize vestibular influences on autonomic control of BP and HR. sGVS was delivered binaurally via Ag/AgCl needle electrodes inserted over the mastoids at stimulus frequencies 0.008-0.4 Hz. Two processes affecting BP and HR were induced by sGVS: 1) a transient drop in BP (≈15-20 mmHg) and HR (≈3 beat*s(-1)), followed by a slow recovery over 1-6 min; and 2) inhibitory modulations in BP (≈4.5 mmHg/g) and HR (≈0.15 beats*s(-1)/g) twice in each stimulus cycle. The BP and HR modulations were approximately in-phase with each other and were best evoked by low stimulus frequencies. A wavelet analysis indicated significant energies in BP and HR at scales related to twice and four times the stimulus frequency bands. BP and HR were also modulated by oscillation in pitch at frequencies 0.025-0.5 Hz. Sensitivities at 0.025 Hz were ≈4.5 mmHg/g (BP) and ≈0.17 beat*s(-1)/g (HR) for pitches of 20-90°. The tilt-induced BP and HR modulations were out-of-phase, but the frequencies at which responses were elicited by tilt and sGVS were the same. The results show that the sGVS-induced responses, which likely originate in the otolith organs, can exert a powerful inhibitory effect on both BP and HR at low frequencies. These responses have a striking resemblance to human vasovagal responses. Thus, sGVS-activated rats can potentially serve as a useful experimental model of the vasovagal response in humans.


Assuntos
Pressão Sanguínea/fisiologia , Frequência Cardíaca/fisiologia , Síncope Vasovagal/fisiopatologia , Vestíbulo do Labirinto/fisiologia , Animais , Estimulação Elétrica , Masculino , Distribuição Aleatória , Ratos , Ratos Long-Evans , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...