Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 16251, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758785

RESUMO

The urban community faces a significant obstacle in effectively utilising Earth Observation (EO) intelligence, particularly the Copernicus EO program of the European Union, to address the multifaceted aspects of urban sustainability and bolster urban resilience in the face of climate change challenges. In this context, here we present the efforts of the CURE project, which received funding under the European Union's Horizon 2020 Research and Innovation Framework Programme, to leverage the Copernicus Core Services (CCS) in supporting urban resilience. CURE provides spatially disaggregated environmental intelligence at a local scale, demonstrating that CCS can facilitate urban planning and management strategies to improve the resilience of cities. With a strong emphasis on stakeholder engagement, CURE has identified eleven cross-cutting applications between CCS that correspond to the major dimensions of urban sustainability and align with user needs. These applications have been integrated into a cloud-based platform known as DIAS (Data and Information Access Services), which is capable of delivering reliable, usable and relevant intelligence to support the development of downstream services towards enhancing resilience planning of cities throughout Europe.

2.
Sci Total Environ ; 695: 133560, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31422334

RESUMO

Human mortality shows a pronounced temperature dependence. The minimum mortality temperature (MMT) as a characteristic point of the temperature-mortality relationship is influenced by many factors. As MMT estimates are based on case studies, they are sporadic, limited to data-rich regions, and their drivers have not yet been clearly identified across case studies. This impedes the elaboration of spatially comprehensive impact studies on heat-related mortality and hampers the temporal transfer required to assess climate change impacts. Using 400 MMTs from cities, we systematically establish a generalised model that is able to estimate MMTs (in daily apparent temperature) for cities, based on a set of climatic, topographic and socio-economic drivers. A sigmoid model prevailed against alternative model setups due to having the lowest Akaike Information Criterion (AICc) and the smallest RMSE. We find the long-term climate, the elevation, and the socio-economy to be relevant drivers of our MMT sample within the non-linear parametric regression model. A first model application estimated MMTs for 599 European cities (>100 000 inhabitants) and reveals a pronounced decrease in MMTs (27.8-16 °C) from southern to northern cities. Disruptions of this pattern across regions of similar mean temperatures can be explained by socio-economic standards as noted for central eastern Europe. Our alternative method allows to approximate MMTs independently from the availability of daily mortality records. For the first time, a quantification of climatic and non-climatic MMT drivers has been achieved, which allows to consider changes in socio-economic conditions and climate. This work contributes to the comparability among MMTs beyond location-specific and regional limits and, hence, towards a spatially comprehensive impact assessment for heat-related mortality.


Assuntos
Mudança Climática , Exposição Ambiental/estatística & dados numéricos , Mortalidade/tendências , Temperatura , Cidades/epidemiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA