Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335100

RESUMO

Organisms appear opaque largely because their outer tissue layers are strongly scattering to incident light; strongly absorbing pigments, such as blood, typically have narrow absorbances, such that the mean free path of light outside the absorbance peaks can be quite long. As people cannot see through tissue, they generally imagine that tissues like the brain, fat, and bone contain little or no light. However, photoresponsive opsin proteins are expressed within many of these tissues, and their functions are poorly understood. Radiance internal to tissue is also important for understanding photosynthesis. For example, giant clams are strongly absorbing yet maintain a dense population of algae deep in the tissue. Light propagation through systems like sediments and biofilms can be complex, and these communities can be major contributors to ecosystem productivity. Therefore, a method for constructing optical micro-probes for measuring scalar irradiance (photon flux intersecting a point) and downwelling irradiance (photon flux crossing a plane perpendicularly) to better understand these phenomena inside living tissue has been developed. This technique is also tractable in field laboratories. These micro-probes are made from heat-pulled optical fibers that are then secured in pulled glass pipettes. To change the angular acceptance of the probe, a 10-100 µm sized sphere of UV-curable epoxy mixed with titanium dioxide is then secured to the end of a pulled, trimmed fiber. The probe is inserted into living tissue, and its position is controlled using a micromanipulator. These probes are capable of measuring in situ tissue radiance at spatial resolutions of 10-100 µm or on the scale of single cells. These probes were used to characterize the light reaching the adipose and brain cells 4 mm below the skin of a living mouse and to characterize the light reaching similar depths within living algae-rich giant clam tissue.


Assuntos
Ecossistema , Fotossíntese , Animais , Camundongos , Fibras Ópticas , Fótons , Radiometria
2.
Nature ; 585(7825): 420-425, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879486

RESUMO

The opsin family of G-protein-coupled receptors are used as light detectors in animals. Opsin 5 (also known as neuropsin or OPN5) is a highly conserved opsin that is sensitive to visible violet light1,2. In mice, OPN5 is a known photoreceptor in the retina3 and skin4 but is also expressed in the hypothalamic preoptic area (POA)5. Here we describe a light-sensing pathway in which POA neurons that express Opn5 regulate thermogenesis in brown adipose tissue (BAT). We show that Opn5 is expressed in glutamatergic warm-sensing POA neurons that receive synaptic input from several thermoregulatory nuclei. We further show that Opn5 POA neurons project to BAT and decrease its activity under chemogenetic stimulation. Opn5-null mice show overactive BAT, increased body temperature, and exaggerated thermogenesis when cold-challenged. Moreover, violet photostimulation during cold exposure acutely suppresses BAT temperature in wild-type mice but not in Opn5-null mice. Direct measurements of intracellular cAMP ex vivo show that Opn5 POA neurons increase cAMP when stimulated with violet light. This analysis thus identifies a violet light-sensitive deep brain photoreceptor that normally suppresses BAT thermogenesis.


Assuntos
Cor , Luz , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Neurônios/efeitos da radiação , Opsinas/metabolismo , Área Pré-Óptica/citologia , Termogênese/efeitos da radiação , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos da radiação , Animais , Temperatura Corporal , Temperatura Baixa , AMP Cíclico/metabolismo , Feminino , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Opsinas/deficiência , Opsinas/genética , Termogênese/genética
3.
Adv Mater ; 29(44)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29034980

RESUMO

It will be ideal to deliver equal, optimally efficient "doses" of sunlight to all cells in a photobioreactor system, while simultaneously utilizing the entire solar resource. Backed by the numerical scattering simulation and optimization, here, the design, synthesis, and characterization of the synthetic iridocytes that recapitulated the salient forward-scattering behavior of the Tridacnid clam system are reported, which presents the first geometric solution to allow narrow, precise forward redistribution of flux, utilizing the solar resource at the maximum quantum efficiency possible in living cells. The synthetic iridocytes are composed of silica nanoparticles in microspheres embedded in gelatin, both are low refractive index materials and inexpensive. They show wavelength selectivity, have little loss (the back-scattering intensity is reduced to less than ≈0.01% of the forward-scattered intensity), and narrow forward scattering cone similar to giant clams. Moreover, by comparing experiments and theoretical calculation, it is confirmed that the nonuniformity of the scatter sizes is a "feature not a bug" of the design, allowing for efficient, forward redistribution of solar flux in a micrometer-scaled paradigm. This method is environmentally benign, inexpensive, and scalable to produce optical components that will find uses in efficiency-limited solar conversion technologies, heat sinks, and biofuel production.

4.
J R Soc Interface ; 14(130)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28468923

RESUMO

The largest habitat by volume on Earth is the oceanic midwater, which is also one of the least understood in terms of animal ecology. The organisms here exhibit a spectacular array of optical adaptations for living in a visual void that have only barely begun to be described. We describe a complex pattern of broadband scattering from the skin of Argyropelecus sp., a hatchetfish found in the mesopelagic zone of the world's oceans. Hatchetfish skin superficially resembles the unpolished side of aluminium foil, but on closer inspection contains a complex composite array of subwavelength-scale dielectric structures. The superficial layer of this array contains dielectric stacks that are rectangular in cross-section, while the deeper layer contains dielectric bundles that are elliptical in cross-section; the cells in both layers have their longest dimension running parallel to the dorsal-ventral axis of the fish. Using the finite-difference time-domain approach and photographic radiometry, we explored the structural origins of this scattering behaviour and its environmental consequences. When the fish's flank is illuminated from an arbitrary incident angle, a portion of the scattered light exits in an arc parallel to the fish's anterior-posterior axis. Simultaneously, some incident light is also scattered downwards through the complex birefringent skin structure and exits from the ventral photophores. We show that this complex scattering pattern will provide camouflage simultaneously against the horizontal radially symmetric solar radiance in this habitat, and the predatory bioluminescent searchlights that are common here. The structure also directs light incident on the flank of the fish into the downwelling, silhouette-hiding counter-illumination of the ventral photophores.


Assuntos
Mimetismo Biológico/fisiologia , Peixes/fisiologia , Pigmentação da Pele/fisiologia , Pele , Animais
5.
J R Soc Interface ; 13(119)2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27278362

RESUMO

Galiteuthis, a midwater squid, has photophores on the ventral surfaces of its eyes. These photophores emit bioluminescence to counter-illuminate the shadows cast by the eyes in downwelling sunlight, thereby hiding the eyes from upward-looking predators. The photophores consist of laminated fibre-like cells with semi-coaxial protein-dense layers around axial cytoplasm. These cells have been suggested to function as light guides: bioluminescence is an isotropic process used to hide in an anisotropic light environment, so any emission must be reshaped to be effective. We found a wide variation in cross-sectional geometries of photophore cells; some were more efficient at light guiding than others. We used a set of optical models to place these photophores in the context of the radiance where Galiteuthis lives and discovered a possible adaptive reason for this variation. In Galiteuthis's horizontal and vertical range, ocean radiance is also quite variable. For complete camouflage, photophores must reproduce this variation in radiance using an isotropic source. Our models show that variation in the geometry of the photophore light guides reproduces the predicted variation in ocean radiance experienced by this species. By selectively activating geometrically distinct populations of photophore cells, the animal may reproduce the angular distribution of light at all positions in its habitat.


Assuntos
Mimetismo Biológico/fisiologia , Decapodiformes/fisiologia , Pigmentação da Pele/fisiologia , Animais
6.
J R Soc Interface ; 11(101): 20140678, 2014 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-25401182

RESUMO

'Giant' tridacnid clams have evolved a three-dimensional, spatially efficient, photodamage-preventing system for photosymbiosis. We discovered that the mantle tissue of giant clams, which harbours symbiotic nutrition-providing microalgae, contains a layer of iridescent cells called iridocytes that serve to distribute photosynthetically productive wavelengths by lateral and forward-scattering of light into the tissue while back-reflecting non-productive wavelengths with a Bragg mirror. The wavelength- and angle-dependent scattering from the iridocytes is geometrically coupled to the vertically pillared microalgae, resulting in an even re-distribution of the incoming light along the sides of the pillars, thus enabling photosynthesis deep in the tissue. There is a physical analogy between the evolved function of the clam system and an electric transformer, which changes energy flux per area in a system while conserving total energy. At incident light levels found on shallow coral reefs, this arrangement may allow algae within the clam system to both efficiently use all incident solar energy and avoid the photodamage and efficiency losses due to non-photochemical quenching that occur in the reef-building coral photosymbiosis. Both intra-tissue radiometry and multiscale optical modelling support our interpretation of the system's photophysics. This highly evolved 'three-dimensional' biophotonic system suggests a strategy for more efficient, damage-resistant photovoltaic materials and more spatially efficient solar production of algal biofuels, foods and chemicals.


Assuntos
Evolução Biológica , Bivalves , Luz , Microalgas , Fotossíntese/fisiologia , Simbiose/fisiologia , Animais , Bivalves/anatomia & histologia , Bivalves/fisiologia , Microalgas/citologia , Microalgas/fisiologia
7.
J R Soc Interface ; 8(63): 1386-99, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21325315

RESUMO

Cephalopods possess a sophisticated array of mechanisms to achieve camouflage in dynamic underwater environments. While active mechanisms such as chromatophore patterning and body posturing are well known, passive mechanisms such as manipulating light with highly evolved reflectors may also play an important role. To explore the contribution of passive mechanisms to cephalopod camouflage, we investigated the optical and biochemical properties of the silver layer covering the eye of the California fishery squid, Loligo opalescens. We discovered a novel nested-spindle geometry whose correlated structure effectively emulates a randomly distributed Bragg reflector (DBR), with a range of spatial frequencies resulting in broadband visible reflectance, making it a nearly ideal passive camouflage material for the depth at which these animals live. We used the transfer-matrix method of optical modelling to investigate specular reflection from the spindle structures, demonstrating that a DBR with widely distributed thickness variations of high refractive index elements is sufficient to yield broadband reflectance over visible wavelengths, and that unlike DBRs with one or a few spatial frequencies, this broadband reflectance occurs from a wide range of viewing angles. The spindle shape of the cells may facilitate self-assembly of a random DBR to achieve smooth spatial distributions in refractive indices. This design lends itself to technological imitation to achieve a DBR with wide range of smoothly varying layer thicknesses in a facile, inexpensive manner.


Assuntos
Olho/anatomia & histologia , Loligo/fisiologia , Fenômenos Fisiológicos Oculares , Animais , Microscopia/métodos , Microscopia de Força Atômica , Fenômenos Ópticos , Refratometria , Espalhamento de Radiação , Análise Espectral/métodos
8.
Biomaterials ; 31(5): 793-801, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906421

RESUMO

Cephalopods are nicknamed the "masters of disguise" for their highly evolved camouflage mechanisms, including the hallmark ability to rapidly change the color and reflectance of their skin. Previously, reflectin proteins were identified as the major biomaterial component of iridosomes [1], specialized light-reflecting architectures that contribute intense structural color to squid skin, eyes, and organs [2-5]. Supramolecular assembly of reflectin has been recognized as a key property in the protein's function [6]. Here, we report the first cloning and expression of a specific reflectin protein found in the responsive iridophore cells of the squid Loligo pealeii, which are unique in their ability to switch on/off and change color. We demonstrate that these iridophores can be chemically tuned to reflect the entire visible spectrum. By examining recombinant reflectin, we show that this dynamic optical function is facilitated by the hierarchical assembly of nanoscale protein particles that elicit large volume changes upon condensation. These findings provide insight into the design and synthesis of biomaterials for complex, responsive function in optical applications.


Assuntos
Cor , Loligo/química , Proteínas/química , Proteínas/ultraestrutura , Animais , Clonagem Molecular , Luz , Loligo/genética , Loligo/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Refratometria , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...