Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Cancer ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637657

RESUMO

Acute myeloid leukemia (AML) is a largely incurable disease, for which new treatments are urgently needed. While leukemogenesis occurs in the hypoxic bone marrow, the therapeutic tractability of the hypoxia-inducible factor (HIF) system remains undefined. Given that inactivation of HIF-1α/HIF-2α promotes AML, a possible clinical strategy is to target the HIF-prolyl hydroxylases (PHDs), which promote HIF-1α/HIF-2α degradation. Here, we reveal that genetic inactivation of Phd1/Phd2 hinders AML initiation and progression, without impacting normal hematopoiesis. We investigated clinically used PHD inhibitors and a new selective PHD inhibitor (IOX5), to stabilize HIF-α in AML cells. PHD inhibition compromises AML in a HIF-1α-dependent manner to disable pro-leukemogenic pathways, re-program metabolism and induce apoptosis, in part via upregulation of BNIP3. Notably, concurrent inhibition of BCL-2 by venetoclax potentiates the anti-leukemic effect of PHD inhibition. Thus, PHD inhibition, with consequent HIF-1α stabilization, is a promising nontoxic strategy for AML, including in combination with venetoclax.

2.
Chem Sci ; 14(43): 12098-12120, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969593

RESUMO

The human 2-oxoglutarate (2OG)- and Fe(ii)-dependent oxygenases factor inhibiting hypoxia-inducible factor-α (FIH) and HIF-α prolyl residue hydroxylases 1-3 (PHD1-3) regulate the response to hypoxia in humans via catalysing hydroxylation of the α-subunits of the hypoxia-inducible factors (HIFs). Small-molecule PHD inhibitors are used for anaemia treatment; by contrast, few selective inhibitors of FIH have been reported, despite their potential to regulate the hypoxic response, either alone or in combination with PHD inhibition. We report molecular, biophysical, and cellular evidence that the N-hydroxythiazole scaffold, reported to inhibit PHD2, is a useful broad spectrum 2OG oxygenase inhibitor scaffold, the inhibition potential of which can be tuned to achieve selective FIH inhibition. Structure-guided optimisation resulted in the discovery of N-hydroxythiazole derivatives that manifest substantially improved selectivity for FIH inhibition over PHD2 and other 2OG oxygenases, including Jumonji-C domain-containing protein 5 (∼25-fold), aspartate/asparagine-ß-hydroxylase (>100-fold) and histone Nε-lysine demethylase 4A (>300-fold). The optimised N-hydroxythiazole-based FIH inhibitors modulate the expression of FIH-dependent HIF target genes and, consistent with reports that FIH regulates cellular metabolism, suppressed lipid accumulation in adipocytes. Crystallographic studies reveal that the N-hydroxythiazole derivatives compete with both 2OG and the substrate for binding to the FIH active site. Derivatisation of the N-hydroxythiazole scaffold has the potential to afford selective inhibitors for 2OG oxygenases other than FIH.

3.
ChemMedChem ; 17(1): e202100398, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34581506

RESUMO

Studies on the inhibition of the human 2-oxoglutarate dependent oxygenase JMJD6, which is a cancer target, by 2-oxoglutarate mimics / competitors, including human drugs, drug candidates, and metabolites relevant to cancer are described. JMJD6 assays employed NMR to monitor inhibitor binding and use of mass spectrometry to monitor JMJD6-catalysed lysine hydroxylation. Notably, some clinically applied prolyl hydroxylase inhibitors also inhibit JMJD6. The results will help enable the development of inhibitors selective for human oxygenases, including JMJD6.


Assuntos
Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Ácidos Cetoglutáricos/farmacologia , Inibidores de Prolil-Hidrolase/farmacologia , Relação Dose-Resposta a Droga , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Ácidos Cetoglutáricos/química , Estrutura Molecular , Inibidores de Prolil-Hidrolase/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Relação Estrutura-Atividade
4.
ChemMedChem ; 16(13): 2082-2088, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33792169

RESUMO

Human prolyl-hydroxylases (PHDs) are hypoxia-sensing 2-oxoglutarate (2OG) oxygenases, catalysis by which suppresses the transcription of hypoxia-inducible factor target genes. PHD inhibition enables the treatment of anaemia/ischaemia-related disease. The PHD inhibitor Molidustat is approved for the treatment of renal anaemia; it differs from other approved/late-stage PHD inhibitors in lacking a glycinamide side chain. The first reported crystal structures of Molidustat and IOX4 (a brain-penetrating derivative) complexed with PHD2 reveal how their contiguous triazole, pyrazolone and pyrimidine/pyridine rings bind at the active site. The inhibitors bind to the active-site metal in a bidentate manner through their pyrazolone and pyrimidine nitrogens, with the triazole π-π-stacking with Tyr303 in the 2OG binding pocket. Comparison of the new structures with other PHD inhibitor complexes reveals differences in the conformations of Tyr303, Tyr310, and a mobile loop linking ß2-ß3, which are involved in dynamic substrate binding/product release.


Assuntos
Prolil Hidroxilases/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Pirazóis/farmacologia , Triazóis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Prolil-Hidrolase/química , Pirazóis/química , Relação Estrutura-Atividade , Triazóis/química
5.
ChemMedChem ; 15(3): 270-273, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31751494

RESUMO

The 2-oxoglutarate-dependent hypoxia inducible factor prolyl hydroxylases (PHDs) are targets for treatment of a variety of diseases including anaemia. One PHD inhibitor is approved for use for the treatment of renal anaemia and others are in late stage clinical trials. The number of reported templates for PHD inhibition is limited. We report structure-activity relationship and crystallographic studies on a promising class of 4-hydroxypyrimidine-containing PHD inhibitors.


Assuntos
Prolina Dioxigenases do Fator Induzível por Hipóxia/antagonistas & inibidores , Inibidores de Prolil-Hidrolase/farmacologia , Pirimidinonas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Humanos , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Prolil-Hidrolase/química , Pirimidinonas/química , Relação Estrutura-Atividade
6.
Medchemcomm ; 10(4): 500-504, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31057728

RESUMO

The 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (PHDs) are targets for treatment of anaemia and other ischaemia related diseases. PHD inhibitors are in clinical trials; however, the number of reported templates for PHD inhibition is limited. We report structure-activity relationship and crystallographic studies on spiro[4.5]decanone containing PHD inhibitors. Together with other studies, our results reveal spiro[4.5]decanones as useful templates for generation of potent and selective 2OG oxygenase inhibitors.

7.
Chem Sci ; 8(11): 7651-7668, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29435217

RESUMO

Inhibition of the human 2-oxoglutarate (2OG) dependent hypoxia inducible factor (HIF) prolyl hydroxylases (human PHD1-3) causes upregulation of HIF, thus promoting erythropoiesis and is therefore of therapeutic interest. We describe cellular, biophysical, and biochemical studies comparing four PHD inhibitors currently in clinical trials for anaemia treatment, that describe their mechanisms of action, potency against isolated enzymes and in cells, and selectivities versus representatives of other human 2OG oxygenase subfamilies. The 'clinical' PHD inhibitors are potent inhibitors of PHD catalyzed hydroxylation of the HIF-α oxygen dependent degradation domains (ODDs), and selective against most, but not all, representatives of other human 2OG dependent dioxygenase subfamilies. Crystallographic and NMR studies provide insights into the different active site binding modes of the inhibitors. Cell-based results reveal the inhibitors have similar effects on the upregulation of HIF target genes, but differ in the kinetics of their effects and in extent of inhibition of hydroxylation of the N- and C-terminal ODDs; the latter differences correlate with the biophysical observations.

8.
Mol Aspects Med ; 47-48: 54-75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26791432

RESUMO

In human cells oxygen levels are 'sensed' by a set of ferrous iron and 2-oxoglutarate dependent dioxygenases. These enzymes regulate a broad range of cellular and systemic responses to hypoxia by catalysing the post-translational hydroxylation of specific residues in the alpha subunits of hypoxia inducible factor (HIF) transcriptional complexes. The HIF hydroxylases are now the subject of pharmaceutical targeting by small molecule inhibitors that aim to activate or augment the endogenous HIF transcriptional response for the treatment of anaemia and other hypoxic human diseases. Here we consider the rationale for this therapeutic strategy from the biochemical, biological and medical perspectives. We outline structural and mechanistic considerations that are relevant to the design of HIF hydroxylase inhibitors, including likely determinants of specificity, and review published reports on their activity in pre-clinical models and clinical trials.


Assuntos
Sistemas de Liberação de Medicamentos , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia/metabolismo , Oxigenases de Função Mista/antagonistas & inibidores , Anemia/tratamento farmacológico , Animais , Modelos Animais de Doenças , Eritropoetina/deficiência , Eritropoetina/metabolismo , Humanos , Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Inflamação/tratamento farmacológico , Isquemia/tratamento farmacológico , Oxigenases de Função Mista/metabolismo , Oxigênio/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Conformação Proteica , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...