Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(4)2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675966

RESUMO

A devastating bluetongue (BT) epidemic caused by bluetongue virus serotype 3 (BTV-3) has spread throughout most of the Netherlands within two months since the first infection was officially confirmed in the beginning of September 2023. The epidemic comes with unusually strong suffering of infected cattle through severe lameness, often resulting in mortality or euthanisation for welfare reasons. In total, tens of thousands of sheep have died or had to be euthanised. By October 2023, more than 2200 locations with ruminant livestock were officially identified to be infected with BTV-3, and additionally, ruminants from 1300 locations were showing BTV-associated clinical symptoms (but not laboratory-confirmed BT). Here, we report on the spatial spread and dynamics of this BT epidemic. More specifically, we characterized the distance-dependent intensity of the between-holding transmission by estimating the spatial transmission kernel and by comparing it to transmission kernels estimated earlier for BTV-8 transmission in Northwestern Europe in 2006 and 2007. The 2023 BTV-3 kernel parameters are in line with those of the transmission kernel estimated previously for the between-holding spread of BTV-8 in Europe in 2007. The 2023 BTV-3 transmission kernel has a long-distance spatial range (across tens of kilometres), evidencing that in addition to short-distance dispersal of infected midges, other transmission routes such as livestock transports probably played an important role.


Assuntos
Vírus Bluetongue , Bluetongue , Epidemias , Sorogrupo , Animais , Bluetongue/epidemiologia , Bluetongue/transmissão , Bluetongue/virologia , Vírus Bluetongue/classificação , Países Baixos/epidemiologia , Ovinos , Bovinos , Doenças dos Bovinos/virologia , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/transmissão
2.
Viruses ; 15(12)2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140686

RESUMO

Influenza D virus (IDV) can infect various livestock animals, such as cattle, swine, and small ruminants, and was shown to have zoonotic potential. Therefore, it is important to identify viral factors involved in the broad host tropism and identify potential antiviral compounds that can inhibit IDV infection. Recombinant reporter viruses provide powerful tools for studying viral infections and antiviral drug discovery. Here we present the generation of a fluorescent reporter IDV using our previously established reverse genetic system for IDV. The mNeonGreen (mNG) fluorescent reporter gene was incorporated into the IDV non-structural gene segment as a fusion protein with the viral NS1 or NS2 proteins, or as a separate protein flanked by two autoproteolytic cleavage sites. We demonstrate that only recombinant reporter viruses expressing mNG as an additional separate protein or as an N-terminal fusion protein with NS1 could be rescued, albeit attenuated, compared to the parental reverse genetic clone. Serial passaging experiments demonstrated that the mNG gene is stably integrated for up to three passages, after which internal deletions accumulate. We conducted a proof-of-principle antiviral screening with the established fluorescent reporter viruses and identified two compounds influencing IDV infection. These results demonstrate that the newly established recombinant IDV reporter virus can be applied for antiviral drug discovery and monitoring viral replication, adding a new molecular tool for investigating IDV.


Assuntos
Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Bovinos , Animais , Suínos , Humanos , Influenza Humana/genética , Deltainfluenzavirus , Thogotovirus/genética , Orthomyxoviridae/genética , Proteínas Virais/genética , Genes Reporter , Antivirais/farmacologia
3.
Front Immunol ; 13: 978824, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36268025

RESUMO

The respiratory epithelium constitutes the first line of defense against invading respiratory pathogens, such as the 2009 pandemic strain of influenza A virus (IAV, H1N1pdm09), and plays a crucial role in the host antiviral response to infection. Despite its importance, however, it remains unknown how individual cell types within the respiratory epithelium respond to IAV infection or how the latter may influence IAV disease progression and pathogenesis. Here, we used single cell RNA sequencing (scRNA-seq) to dissect the host response to IAV infection in its natural target cells. scRNA-seq was performed on human airway epithelial cell (hAEC) cultures infected with either wild-type pandemic IAV (WT) or with a mutant version of IAV (NS1R38A) that induced a robust innate immune response. We then characterized both the host and viral transcriptomes of more than 19,000 single cells across the 5 major cell types populating the human respiratory epithelium. For all cell types, we observed a wide spectrum of viral burden among single infected cells and a disparate host response between infected and bystander populations. Interestingly, we also identified multiple key differences in the host response to IAV among individual cell types, including high levels of pro-inflammatory cytokines and chemokines in secretory and basal cells and an important role for luminal cells in sensing and restricting incoming virus. Multiple infected cell types were shown to upregulate interferons (IFN), with type III IFNs clearly dominating the antiviral response. Transcriptional changes in genes related to cell differentiation, cell migration, and tissue repair were also identified. Strikingly, we also detected a shift in viral host cell tropism from non-ciliated cells to ciliated cells at later stages of infection and observed major changes in the cellular composition. Microscopic analysis of both WT and NS1R38A virus-infected hAECs at various stages of IAV infection revealed that the transcriptional changes we observed at 18 hpi were likely driving the downstream histopathological alterations in the airway epithelium. To our knowledge, this is the first study to provide a comprehensive analysis of the cell type-specific host antiviral response to influenza virus infection in its natural target cells - namely, the human respiratory epithelium.


Assuntos
Vírus da Influenza A , Influenza Humana , Humanos , Análise de Célula Única , Pandemias , Interferons/genética , Interferons/metabolismo , Citocinas , Antivirais , Progressão da Doença
4.
Front Immunol ; 13: 970325, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059535

RESUMO

Viral cross-species transmission is recognized to be a major threat to both human and animal health, however detailed information on determinants underlying virus host tropism and susceptibility is missing. Influenza C and D viruses (ICV, IDV) are two respiratory viruses that share up to 50% genetic similarity, and both employ 9-O-acetylated sialic acids to enter a host cell. While ICV infections are mainly restricted to humans, IDV possesses a much broader host tropism and has shown to have a zoonotic potential. This suggests that additional virus-host interactions play an important role in the distinct host spectrum of ICV and IDV. In this study, we aimed to characterize the innate immune response of the respiratory epithelium of biologically relevant host species during influenza virus infection to identify possible determinants involved in viral cross-species transmission. To this end, we performed a detailed characterization of ICV and IDV infection in primary airway epithelial cell (AEC) cultures from human, porcine, and bovine origin. We monitored virus replication kinetics, cellular and host tropism, as well as the host transcriptional response over time at distinct ambient temperatures. We observed that both ICV and IDV predominantly infect ciliated cells, independently from host and temperature. Interestingly, temperature had a profound influence on ICV replication in both porcine and bovine AEC cultures, while IDV replicated efficiently irrespective of temperature and host. Detailed time-resolved transcriptome analysis revealed both species-specific and species uniform host responses and highlighted 34 innate immune-related genes with clear virus-specific and temperature-dependent profiles. These data provide the first comprehensive insights into important common and species-specific virus-host dynamics underlying the distinct host tropism of ICV and IDV, as well as possible determinants involved in viral cross-species transmission.


Assuntos
Doenças Transmissíveis , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Thogotovirus , Animais , Bovinos , Humanos , Imunidade Inata , Mucosa Respiratória , Suínos , Thogotovirus/genética
5.
Front Cell Dev Biol ; 10: 824851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242762

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) was first identified in December 2019 as a novel respiratory pathogen and is the causative agent of Corona Virus disease 2019 (COVID-19). Early on during this pandemic, it became apparent that SARS-CoV-2 was not only restricted to infecting the respiratory tract, but the virus was also found in other tissues, including the vasculature. Individuals with underlying pre-existing co-morbidities like diabetes and hypertension have been more prone to develop severe illness and fatal outcomes during COVID-19. In addition, critical clinical observations made in COVID-19 patients include hypercoagulation, cardiomyopathy, heart arrythmia, and endothelial dysfunction, which are indicative for an involvement of the vasculature in COVID-19 pathology. Hence, this review summarizes the impact of SARS-CoV-2 infection on the vasculature and details how the virus promotes (chronic) vascular inflammation. We provide a general overview of SARS-CoV-2, its entry determinant Angiotensin-Converting Enzyme II (ACE2) and the detection of the SARS-CoV-2 in extrapulmonary tissue. Further, we describe the relation between COVID-19 and cardiovascular diseases (CVD) and their impact on the heart and vasculature. Clinical findings on endothelial changes during COVID-19 are reviewed in detail and recent evidence from in vitro studies on the susceptibility of endothelial cells to SARS-CoV-2 infection is discussed. We conclude with current notions on the contribution of cardiovascular events to long term consequences of COVID-19, also known as "Long-COVID-syndrome". Altogether, our review provides a detailed overview of the current perspectives of COVID-19 and its influence on the vasculature.

6.
Animals (Basel) ; 11(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209718

RESUMO

The prevention of bovine respiratory disease is important, as it may lead to impaired welfare, economic losses, and considerable antimicrobial use, which can be associated with antimicrobial resistance. The aim of this study was to describe the prevalence of respiratory viruses and to identify risk factors for their occurrence. A convenience sample of 764 deep nasopharyngeal swab samples from veal calves was screened by PCR for bovine respiratory syncytial virus (BRSV), bovine parainfluenza-3 virus (BPI3V), bovine coronavirus (BCoV), influenza D virus (IDV), and influenza C virus (ICV). The following prevalence rates were observed: BRSV, 2.1%; BPI3V, 3.3%; BCoV, 53.5%; IDV, 4.1%; ICV, 0%. Logistic mixed regression models were built for BCoV to explore associations with calf management and housing. Positive swab samples were more frequent in younger calves than older calves (>100 days; p < 0.001). The probability of detecting BCoV increased with increasing group size in young calves. Findings from this study suggested that young calves should be fattened in small groups to limit the risk of occurrence of BCoV, although an extended spectrum of risk factors for viral associated respiratory disorders such as nutritional aspects should be considered in future studies.

7.
Emerg Infect Dis ; 27(7): 1811-1820, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152956

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.


Assuntos
Animais Selvagens , COVID-19 , Animais , Células Epiteliais , Humanos , Sistema Respiratório , SARS-CoV-2
8.
Viruses ; 13(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803792

RESUMO

The ruminant-associated influenza D virus (IDV) has a broad host tropism and was shown to have zoonotic potential. To identify and characterize molecular viral determinants influencing the host spectrum of IDV, a reverse genetic system is required. For this, we first performed 5' and 3' rapid amplification of cDNA ends (RACE) of all seven genomic segments, followed by assessment of the 5' and 3' NCR activity prior to constructing the viral genomic segments of a contemporary Swiss bovine IDV isolate (D/CN286) into the bidirectional pHW2000 vector. The bidirectional plasmids were transfected in HRT-18G cells followed by viral rescue on the same cell type. Analysis of the segment specific 5' and 3' non-coding regions (NCR) highlighted that the terminal 3' end of all segments harbours an uracil instead of a cytosine nucleotide, similar to other influenza viruses. Subsequent analysis on the functionality of the 5' and 3' NCR in a minireplicon assay revealed that these sequences were functional and that the variable sequence length of the 5' and 3' NCR influences reporter gene expression. Thereafter, we evaluated the replication efficiency of the reverse genetic clone on conventional cell lines of human, swine and bovine origin, as well as by using an in vitro model recapitulating the natural replication site of IDV in bovine and swine. This revealed that the reverse genetic clone D/CN286 replicates efficiently in all cell culture models. Combined, these results demonstrate the successful establishment of a reverse genetic system from a contemporary bovine IDV isolate that can be used for future identification and characterization of viral determinants influencing the broad host tropism of IDV.


Assuntos
Influenza Humana/virologia , Infecções por Orthomyxoviridae/virologia , Genética Reversa/métodos , Thogotovirus/fisiologia , Animais , Bovinos , Cães , Genoma Viral , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Suínos , Tropismo Viral , Replicação Viral
9.
PLoS Biol ; 19(3): e3001158, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780434

RESUMO

Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Animais , Antivirais/farmacologia , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Interferons/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Especificidade da Espécie , Temperatura , Células Vero , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
10.
Microorganisms ; 8(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256227

RESUMO

With over 50 million currently confirmed cases worldwide, including more than 1.3 million deaths, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has a major impact on the economy and health care system. Currently, limited prophylactic or therapeutic intervention options are available against SARS-CoV-2. In this study, 400 compounds from the antimicrobial "pandemic response box" library were screened for inhibiting properties against SARS-CoV-2. An initial screen on Vero E6 cells identified five compounds that inhibited SARS-CoV-2 replication. However, validation of the selected hits in a human lung cell line highlighted that only a single compound, namely Retro-2.1, efficiently inhibited SARS-CoV-2 replication. Additional analysis revealed that the antiviral activity of Retro-2.1 occurs at a post-entry stage of the viral replication cycle. Combined, these data demonstrate that stringent in vitro screening of preselected compounds in multiple cell lines refines the rapid identification of new potential antiviral candidate drugs targeting SARS-CoV-2.

11.
Nature ; 582(7813): 561-565, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32365353

RESUMO

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


Assuntos
Betacoronavirus/genética , Clonagem Molecular/métodos , Infecções por Coronavirus/virologia , Genoma Viral/genética , Genômica/métodos , Pneumonia Viral/virologia , Genética Reversa/métodos , Biologia Sintética/métodos , Animais , COVID-19 , China/epidemiologia , Chlorocebus aethiops , Cromossomos Artificiais de Levedura/metabolismo , Infecções por Coronavirus/epidemiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Humanos , Mutação , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Vírus Sinciciais Respiratórios/genética , SARS-CoV-2 , Saccharomyces cerevisiae/genética , Células Vero , Proteínas Virais/metabolismo , Zika virus/genética
12.
Emerg Infect Dis ; 26(7): 1592-1595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32284092

RESUMO

Infection control instructions call for use of alcohol-based hand rub solutions to inactivate severe acute respiratory syndrome coronavirus 2. We determined the virucidal activity of World Health Organization-recommended hand rub formulations, at full strength and multiple dilutions, and of the active ingredients. All disinfectants demonstrated efficient virus inactivation.


Assuntos
Álcoois/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Desinfetantes/farmacologia , Desinfecção das Mãos/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Inativação de Vírus , COVID-19 , Humanos , SARS-CoV-2 , Organização Mundial da Saúde
13.
J Virol ; 94(11)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32238581

RESUMO

Highly pathogenic avian influenza A(H5N8) viruses first emerged in China in 2010 and in 2014 spread throughout Asia and to Europe and the United States via migrating birds. Influenza A(H5N8) viruses were first detected in the Netherlands in 2014 and caused five outbreaks in poultry farms but were infrequently detected in wild birds. In 2016, influenza A(H5N8) viruses were reintroduced into the Netherlands, resulting in eight poultry farm outbreaks. This outbreak resulted in numerous dead wild birds with severe pathology. Phylogenetic analysis showed that the polymerase genes of these viruses had undergone extensive reassortment between outbreaks. Here, we investigated the differences in virulence between the 2014-15 and the 2016-17 outbreaks by characterizing the polymerase complex of influenza A(H5N8) viruses from both outbreaks. We found that viruses from the 2014-15 outbreak had significantly higher polymerase complex activity in both human and avian cell lines than did those from the 2016-17 outbreak. No apparent differences in the balance between transcription and replication of the viral genome were observed. Interestingly, the 2014-15 polymerase complexes induced significantly higher levels of interferon beta (IFN-ß) than the polymerase complexes of the 2016-17 outbreak viruses, mediated via retinoic acid-inducible gene I (RIG-I). Inoculation of primary duck cells with recombinant influenza A(H5N8) viruses, including viruses with reassorted polymerase complexes, showed that the polymerase complexes from the 2014-15 outbreak induced higher levels of IFN-ß despite relatively minor differences in replication capacity. Together, these data suggest that despite the lower levels of polymerase activity, the higher 2016-17 influenza A(H5N8) virus virulence may be attributed to the lower level of activation of the innate immune system.IMPORTANCE Compared to the 2014-15 outbreak, the 2016-17 outbreak of influenza A(H5N8) viruses in the Netherlands and Europe was more virulent; the number of dead or diseased wild birds found and the severity of pathological changes were higher during the 2016-17 outbreak. The polymerase complex plays an important role in influenza virus virulence, and the gene segments of influenza A(H5N8) viruses reassorted extensively between the outbreaks. In this study, the 2014-15 polymerase complexes were found to be more active, which is counterintuitive with the observed higher virulence of the 2016-17 outbreak viruses. Interestingly, the 2014-15 polymerase complexes also induced higher levels of IFN-ß. These findings suggest that the higher virulence of influenza A(H5N8) viruses from the 2016-17 outbreak may be related to the lower induction of IFN-ß. An attenuated interferon response could lead to increased dissemination, pathology, and mortality, as observed in (wild) birds infected during the 2016-2017 outbreak.


Assuntos
Proteínas Aviárias , Surtos de Doenças , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Interferon beta , RNA Polimerase Dependente de RNA , Proteínas Virais , Animais , Proteínas Aviárias/genética , Proteínas Aviárias/imunologia , Coturnix , Cães , Patos , Células HEK293 , Humanos , Vírus da Influenza A Subtipo H5N8/genética , Vírus da Influenza A Subtipo H5N8/imunologia , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Influenza Aviária/imunologia , Interferon beta/genética , Interferon beta/imunologia , Células Madin Darby de Rim Canino , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia
15.
Viruses ; 11(4)2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31022887

RESUMO

Influenza viruses are notorious pathogens that frequently cross the species barrier with often severe consequences for both animal and human health. In 2011, a novel member of the Orthomyxoviridae family, Influenza D virus (IDV), was identified in the respiratory tract of swine. Epidemiological surveys revealed that IDV is distributed worldwide among livestock and that IDV-directed antibodies are detected in humans with occupational exposure to livestock. To identify the transmission capability of IDV to humans, we determined the viral replication kinetics and cell tropism using an in vitro respiratory epithelium model of humans. The inoculation of IDV revealed efficient replication kinetics and apical progeny virus release at different body temperatures. Intriguingly, the replication characteristics of IDV revealed higher replication kinetics compared to Influenza C virus, despite sharing the cell tropism preference for ciliated cells. Collectively, these results might indicate why IDV-directed antibodies are detected among humans with occupational exposure to livestock.


Assuntos
Diferenciação Celular , Células Epiteliais/virologia , Mucosa Respiratória/citologia , Thogotovirus/fisiologia , Tropismo Viral , Replicação Viral , Temperatura Corporal , Brônquios/citologia , Brônquios/virologia , Células Cultivadas , Humanos , Cinética , RNA Viral/genética , Thogotovirus/genética
16.
Emerg Microbes Infect ; 8(1): 262-271, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30866780

RESUMO

The continuing pandemic threat posed by avian influenza A/H5N1 viruses calls for improved insights into their evolution during human infection. We performed whole genome deep sequencing of respiratory specimens from 44 H5N1-infected individuals from Indonesia and found substantial within-host viral diversity. At nearly 30% of genome positions multiple amino acids were observed within or across samples, including positions implicated in aerosol transmission between ferrets. Amino acid variants detected our cohort were often found more frequently in available H5N1 sequences of human than avian isolates. We additionally identified previously unreported amino acid variants and multiple variants that increased in proportion over time in available sequential samples. Given the importance of the polymerase complex for host adaptation, we tested 121 amino acid variants found in the PB2, PB1 and PA subunits for their effects on polymerase activity in human cells. We identified multiple single amino acid variants in all three polymerase subunits that substantially increase polymerase activity including some with effects comparable to that of the widely recognized adaption and virulence marker PB2-E627 K. These results indicate highly dynamic evolutionary processes during human H5N1 virus infection and the potential existence of previously undocumented adaptive pathways.


Assuntos
Substituição de Aminoácidos , Virus da Influenza A Subtipo H5N1/classificação , Influenza Humana/virologia , Sequenciamento Completo do Genoma/métodos , Evolução Molecular , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Indonésia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética
17.
J Gen Virol ; 97(9): 2255-2264, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27365054

RESUMO

Noroviruses are a major cause of acute gastroenteritis worldwide and are a genetically diverse group of viruses. Since 2002, an increasing number of norovirus outbreaks have been reported globally, but it is not clear whether this increase has been caused by a higher awareness or reflects the emergence of new genogroup II genotype 4 (GII.4) variants. The hypothesis that norovirus prevalence has increased post-2002 and is related to the emergence of GII.4 is tested in this study. Sera collected from children aged <5 years of three Dutch cross-sectional population based cohorts in 1963, 1983 and 2006/2007 (n=143, n=130 and n=376, respectively) were tested for specific serum IgG by protein array using antigens to GII.4 and a range of other antigens representing norovirus GI, GII and GIV genotypes. The protein array was validated by paired sera of norovirus infected patients and supernatants of B-cell cultures with single epitope specificity. Evidence for norovirus infection was found to be common among Dutch children in each cohort, but the prevalence towards different genotypes changed over time. At the genogroup level, GI seroprevalence decreased significantly between 1963 and 2006/2007, while a significant increase of GII and, in particular, specific antibodies of the genotype GII.4 was detected in the 2006/2007 cohort. There were no children with only GII.4 antibodies in the 1963 cohort. This study shows that the high GII.4 norovirus incidence in very young children is a recent phenomenon. These findings are of importance for vaccine development and trials that are currently focusing mostly on GII.4 viruses.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Caliciviridae/epidemiologia , Gastroenterite/epidemiologia , Genótipo , Norovirus/imunologia , Infecções por Caliciviridae/virologia , Criança , Estudos Transversais , Gastroenterite/virologia , Humanos , Imunoglobulina G/sangue , Países Baixos/epidemiologia , Norovirus/classificação , Estudos Soroepidemiológicos
18.
J Virol ; 89(21): 11169-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26311870

RESUMO

It is well known that plasmid DNA transfection, prior to virus infection, negatively affects infection efficiency. Here, we show that cytosolic plasmid DNA activates the cGAS/STING signaling pathway, which ultimately leads to the induction of an antiviral state of the cells. Using a transient one-plasmid clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system, we generated cGAS/STING-knockout cells and show that these cells can be infected after plasmid DNA transfection as efficiently as nontransfected cells.


Assuntos
Infecções por Coxsackievirus/metabolismo , Citosol/metabolismo , Técnicas de Transferência de Genes , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Plasmídeos/metabolismo , Transdução de Sinais/fisiologia , Sistemas CRISPR-Cas , Citometria de Fluxo , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Proteínas Luminescentes , Proteínas de Membrana/genética , Mengovirus/metabolismo , Nucleotidiltransferases/genética , Plasmídeos/genética , Transdução de Sinais/genética , Transfecção/métodos , Proteína Vermelha Fluorescente
19.
Front Microbiol ; 5: 347, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25071755

RESUMO

Previously unknown or unexpected pathogens may be responsible for that proportion of respiratory diseases in which a causative agent cannot be identified. The application of broad-spectrum, sequence independent virus discovery techniques may be useful to reduce this proportion and widen our knowledge about respiratory pathogens. Thanks to the availability of high-throughput sequencing (HTS) technology, it became today possible to detect viruses which are present at a very low load, but the clinical relevance of those viruses must be investigated. In this study we used VIDISCA-454, a restriction enzyme based virus discovery method that utilizes Roche 454 HTS system, on a nasal swab collected from a subject with respiratory complaints. A γ-papillomavirus was detected (complete genome: 7142 bp) and its role in disease was investigated. Respiratory samples collected both during the acute phase of the illness and 2 weeks after full recovery contained the virus. The patient presented antibodies directed against the virus but there was no difference between IgG levels in blood samples collected during the acute phase and 2 weeks after full recovery. We therefore concluded that the detected γ-papillomavirus is unlikely to be the causative agent of the respiratory complaints and its presence in the nose of the patient is not related to the disease. Although HTS based virus discovery techniques proved their great potential as a tool to clarify the etiology of some infectious diseases, the obtained information must be subjected to cautious interpretations. This study underlines the crucial importance of performing careful investigations on viruses identified when applying sensitive virus discovery techniques, since the mere identification of a virus and its presence in a clinical sample are not satisfactory proofs to establish a causative link with a disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...