Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Osteoarthritis Cartilage ; 27(10): 1526-1536, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31265883

RESUMO

OBJECTIVE: Mechanical loading and joint health have a unique relationship in osteoarthritis (OA) onset and progression. Although high load levels adversely affect cartilage health, exercise that involves low to moderate load levels can alleviate OA symptoms. We sought to isolate the beneficial effects of mechanical loading using controlled in vivo cyclic tibial compression. We hypothesized that low-level cyclic compression would attenuate post-traumatic OA symptoms induced by destabilization of the medial meniscus (DMM). METHODS: 10-week-old C57Bl/6J male mice underwent DMM surgery (n = 51). After a 5-day post-operative recovery period, we applied daily cyclic tibial compression to the operated limbs at low (1.0N or 2.0N) or moderate (4.5N) magnitudes for 2 or 6 weeks. At the completion of loading, we compared cartilage and peri-articular bone features of mice that underwent DMM and loading to mice that only underwent DMM. RESULTS: Compared to DMM alone, low-level cyclic compression for 6 weeks attenuated DMM-induced cartilage degradation (OARSI score, P = 0.008, 95% confidence interval (CI): 0.093 to 0.949). Low-level loading attenuated DMM-induced osteophyte formation after 2 weeks (osteophyte size, P = 0.033, 95% CI: 3.27-114.45 µm), and moderate loading attenuated subchondral bone sclerosis after 6 weeks (tissue mineral density (TMD), P = 0.011, 95% CI: 6.32-70.60 mg HA/ccm) compared to limbs that only underwent DMM. Finally, loading had subtle beneficial effects on cartilage cellularity and aggrecanase activity after DMM. CONCLUSION: Low-level cyclic compression is beneficial to joint health after an injury. Therefore, the progression of early OA may be attenuated by applying well controlled, low-level loading shortly following joint trauma.


Assuntos
Osteoartrite/prevenção & controle , Suporte de Carga , Animais , Progressão da Doença , Articulações/lesões , Masculino , Meniscos Tibiais/cirurgia , Camundongos , Camundongos Endogâmicos C57BL , Osteoartrite/etiologia , Tíbia/fisiologia , Fatores de Tempo
2.
Osteoarthritis Cartilage ; 27(1): 129-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240938

RESUMO

OBJECTIVE: Metabolic syndrome is characterized by obesity, hyperglycemia, hypertension, insulin resistance, and dyslipidemia. Metabolic syndrome is associated with osteoarthritis (OA), but it is unclear if the association is attributable to increased mechanical loading on joints caused by obesity or other aspects of metabolic syndrome. Here we examined the effects of altered metabolism, obesity, and the gut microbiome on load-induced OA. DESIGN: Cartilage damage was induced through cyclic compressive loading in four groups of adult male mice: Toll-like receptor-5 deficient (TLR5KO) mice that develop metabolic syndrome due to alterations in the gut microbiome, TLR5KO mice submitted to chronic antibiotics to prevent metabolic syndrome (TLR5KOΔMicrobiota), C57BL/6J mice fed a high fat diet to cause obesity (HFD), and untreated C57BL/6J mice (WT). Loading was applied for 2 weeks (n = 10-11/group) or 6 weeks (n = 10-11/group). RESULTS: After 2 weeks of loading, cartilage damage (OARSI score) was not different among groups. After 6 weeks of loading, HFD mice had increased load-induced cartilage damage, while TLR5KO mice had cartilage damage comparable to WT mice. TLR5KOΔMicrobiota mice had less cartilage damage than other groups. HFD mice had elevated serum inflammatory markers. Each group had a distinct gut microbiome composition. CONCLUSIONS: Severe obesity increased load-induced cartilage damage, while milder changes in adiposity/metabolic syndrome seen in TLR5KO mice did not. Furthermore, the effects of systemic inflammation/obesity on cartilage damage depend on the duration of mechanical loading. Lastly, reduced cartilage damage in the TLR5KOΔMicrobiota mice suggests that the gut microbiome may influence cartilage pathology.


Assuntos
Artrite Experimental/etiologia , Microbioma Gastrointestinal , Síndrome Metabólica/complicações , Obesidade/complicações , Osteoartrite/etiologia , Tecido Adiposo/patologia , Animais , Artrite Experimental/microbiologia , Artrite Experimental/patologia , Biomarcadores/sangue , Índice de Massa Corporal , Cartilagem Articular/patologia , Citocinas/sangue , Mediadores da Inflamação/sangue , Lipopolissacarídeos/sangue , Masculino , Síndrome Metabólica/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/sangue , Osteoartrite/microbiologia , Osteoartrite/patologia , Receptor 5 Toll-Like/deficiência , Receptor 5 Toll-Like/genética , Suporte de Carga/fisiologia
3.
Nature ; 309(5971): 778-81, 1984.
Artigo em Inglês | MEDLINE | ID: mdl-6738693

RESUMO

In the British Quaternary, two post-Cromerian interglacials, the Hoxnian and the Ipswichian, are recognized. Evidence of additional interglacials in this interval is widely accepted in the oceanic record of Quaternary events, and the possibility that at least one additional interglacial of this age is represented in Britain has been discussed. However, in the absence of datable interglacial deposits which are seen to overlie one another, the issue has remained controversial. We describe here deposits at Marsworth, UK (Fig. 1) where there is evidence of two temperate episodes, and of intervening periglacial conditions. Stratigraphical superposition is established beyond any reasonable doubt. The later deposit relates to the temperate woodland stage of the Ipswichian Interglacial. Dating of the earlier temperate material by the 230Th/234U disequilibrium method indicates an interglacial episode not previously established in the British Quaternary.


Assuntos
Fósseis , Mamíferos/genética , Paleontologia , Animais , Evolução Biológica , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...