Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(11): e2208120120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877837

RESUMO

Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration.


Assuntos
Incêndios , Traqueófitas , Incêndios Florestais , Clima , Mudança Climática
2.
PNAS Nexus ; 1(3): pgac115, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36741468

RESUMO

Fire is an integral component of ecosystems globally and a tool that humans have harnessed for millennia. Altered fire regimes are a fundamental cause and consequence of global change, impacting people and the biophysical systems on which they depend. As part of the newly emerging Anthropocene, marked by human-caused climate change and radical changes to ecosystems, fire danger is increasing, and fires are having increasingly devastating impacts on human health, infrastructure, and ecosystem services. Increasing fire danger is a vexing problem that requires deep transdisciplinary, trans-sector, and inclusive partnerships to address. Here, we outline barriers and opportunities in the next generation of fire science and provide guidance for investment in future research. We synthesize insights needed to better address the long-standing challenges of innovation across disciplines to (i) promote coordinated research efforts; (ii) embrace different ways of knowing and knowledge generation; (iii) promote exploration of fundamental science; (iv) capitalize on the "firehose" of data for societal benefit; and (v) integrate human and natural systems into models across multiple scales. Fire science is thus at a critical transitional moment. We need to shift from observation and modeled representations of varying components of climate, people, vegetation, and fire to more integrative and predictive approaches that support pathways toward mitigating and adapting to our increasingly flammable world, including the utilization of fire for human safety and benefit. Only through overcoming institutional silos and accessing knowledge across diverse communities can we effectively undertake research that improves outcomes in our more fiery future.

3.
Glob Chang Biol ; 27(9): 1692-1703, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629799

RESUMO

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km2 , from Australia's coral reefs to terrestrial Antarctica. Pressures from global climate change and regional human impacts, occurring as chronic 'presses' and/or acute 'pulses', drive ecosystem collapse. Ecosystem responses to 5-17 pressures were categorised as four collapse profiles-abrupt, smooth, stepped and fluctuating. The manifestation of widespread ecosystem collapse is a stark warning of the necessity to take action. We present a three-step assessment and management framework (3As Pathway Awareness, Anticipation and Action) to aid strategic and effective mitigation to alleviate further degradation to help secure our future.


Assuntos
Recifes de Corais , Ecossistema , Regiões Antárticas , Biodiversidade , Mudança Climática , Humanos
4.
PLoS One ; 15(4): e0230424, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275725

RESUMO

Increasing concentrations of greenhouse gases (GHGs) are causing global climate change and decreasing the stability of the climate system. Long-term solutions to climate change will require reduction in GHG emissions as well as the removal of large quantities of GHGs from the atmosphere. Natural climate solutions (NCS), i.e., changes in land management, ecosystem restoration, and avoided conversion of habitats, have substantial potential to meet global and national greenhouse gas (GHG) reduction targets and contribute to the global drawdown of GHGs. However, the relative role of NCS to contribute to GHG reduction at subnational scales is not well known. We examined the potential for 12 NCS activities on natural and working lands in Oregon, USA to reduce GHG emissions in the context of the state's climate mitigation goals. We evaluated three alternative scenarios wherein NCS implementation increased across the applicable private or public land base, depending on the activity, and estimated the annual GHG reduction in carbon dioxide equivalents (CO2e) attributable to NCS from 2020 to 2050. We found that NCS within Oregon could contribute annual GHG emission reductions of 2.7 to 8.3 MMT CO2e by 2035 and 2.9 to 9.8 MMT CO2e by 2050. Changes in forest-based activities including deferred timber harvest, riparian reforestation, and replanting after wildfires contributed most to potential GHG reductions (76 to 94% of the overall annual reductions), followed by changes to agricultural management through no-till, cover crops, and nitrogen management (3 to 15% of overall annual reductions). GHG reduction benefits are relatively high per unit area for avoided conversion of forests (125-400 MT CO2e ha-1). However, the existing land use policy in Oregon limits the current geographic extent of active conversion of natural lands and thus, avoided conversions results in modest overall potential GHG reduction benefits (i.e., less than 5% of the overall annual reductions). Tidal wetland restoration, which has high per unit area carbon sequestration benefits (8.8 MT CO2e ha-1 yr-1), also has limited possible geographic extent resulting in low potential (< 1%) of state-level GHG reduction contributions. However, co-benefits such as improved habitat and water quality delivered by restoration NCS pathways are substantial. Ultimately, reducing GHG emissions and increasing carbon sequestration to combat climate change will require actions across multiple sectors. We demonstrate that the adoption of alternative land management practices on working lands and avoided conversion and restoration of native habitats can achieve meaningful state-level GHG reductions.


Assuntos
Mudança Climática , Saúde Ambiental , Gases de Efeito Estufa , Agricultura/métodos , Dióxido de Carbono/metabolismo , Sequestro de Carbono , Conservação dos Recursos Naturais/métodos , Efeito Estufa , Nitrogênio , Oregon
5.
Glob Chang Biol ; 26(5): 3108-3121, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32125058

RESUMO

Untangling the nuanced relationships between landscape, fire disturbance, human agency, and climate is key to understanding rapid population declines of fire-sensitive plant species. Using multiple lines of evidence across temporal and spatial scales (vegetation survey, stand structure analysis, dendrochronology, and fire history reconstruction), we document landscape-scale population collapse of the long-lived, endemic Tasmanian conifer Athrotaxis selaginoides in remote montane catchments in southern Tasmania. We contextualized the findings of this field-based study with a Tasmanian-wide geospatial analysis of fire-killed and unburned populations of the species. Population declines followed European colonization commencing in 1802 ad that disrupted Aboriginal landscape burning. Prior to European colonization, fire events were infrequent but frequency sharply increased afterwards. Dendrochronological analysis revealed that reconstructed fire years were associated with abnormally warm/dry conditions, with below-average streamflow, and were strongly teleconnected to the Southern Annular Mode. The multiple fires that followed European colonization caused near total mortality of A. selaginoides and resulted in pronounced floristic, structural vegetation, and fuel load changes. Burned stands have very few regenerating A. selaginoides juveniles yet tree-establishment reconstruction of fire-killed adults exhibited persistent recruitment in the period prior to European colonization. Collectively, our findings indicate that this fire-sensitive Gondwanan conifer was able to persist with burning by Aboriginal Tasmanians, despite episodic widespread forest fires. By contrast, European burning led to the restriction of A. selaginoides to prime topographic fire refugia. Increasingly, frequent fires caused by regional dry and warming trends and increased ignitions by humans and lightning are breaching fire refugia; hence, the survival Tasmanian Gondwanan species demands sustained and targeted fire management.


Assuntos
Incêndios , Traqueófitas , Ecossistema , Florestas , Humanos , Refúgio de Vida Selvagem , Tasmânia , Árvores
6.
PLoS One ; 13(10): e0205287, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278062

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0201195.].

7.
Nat Commun ; 9(1): 4355, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341309

RESUMO

Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.


Assuntos
Mudança Climática , Ecossistema , Florestas , Tecnologia de Sensoriamento Remoto
8.
PLoS One ; 13(8): e0201195, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30133449

RESUMO

In recent decades large fires have affected communities throughout central and southern Chile with great social and ecological consequences. Despite this high fire activity, the controls and drivers and the spatiotemporal pattern of fires are not well understood. To identify the large-scale trends and drivers of recent fire activity across six regions in south-central Chile (~32-40° S Latitude) we evaluated MODIS satellite-derived fire detections and compared this data with Chilean Forest Service records for the period 2001-2017. MODIS burned area estimates provide a spatially and temporally comprehensive record of fire activity across an important bioclimatic transition zone between dry Mediterranean shrublands/sclerophyllous forests and wetter deciduous-broadleaf evergreen forests. Results suggest fire activity was highly variable in any given year, with no statistically significant trend in the number of fires or mean annual area burned. Evaluation of the variables associated with spatiotemporal patterns of fire for the 2001-2017 period indicate vegetation type, biophysical conditions (e.g., elevation, slope), mean annual and seasonal climatic conditions (e.g., precipitation) and mean population density have the greatest influence on the probability of fire occurrence and burned area for any given year. Both the number of fires and annual area burned were greatest in warmer, biomass-rich lowland Bío-Bío and Araucanía regions. Resource selection analyses indicate fire 'preferentially' occurs in exotic plantation forests, mixed native-exotic forests, native sclerophyll forests, pasture lands and matorral, vegetation types that all provide abundant, flammable and connected biomass for burning. Structurally and compositionally homogenous exotic plantation forests may promote fire spread greater than native deciduous-Nothofagaceae forests which were once widespread in the southern parts of the study area. In the future, the coincidence of warmer and drier conditions in landscapes dominated by flammable and fuel-rich forest plantations and mixed native-exotic and sclerophyll forests are likely to further promote large fires in south-central Chile.


Assuntos
Conservação dos Recursos Naturais/métodos , Incêndios/estatística & dados numéricos , Biomassa , Chile , Mudança Climática/estatística & dados numéricos , Ecossistema , Modelos Teóricos , Imagens de Satélites/métodos
9.
Proc Natl Acad Sci U S A ; 114(36): 9552-9557, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827329

RESUMO

The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531-2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37-54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665-1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century.

10.
Glob Chang Biol ; 21(1): 445-58, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25044347

RESUMO

Athrotaxis cupressoides is a slow-growing and long-lived conifer that occurs in the subalpine temperate forests of Tasmania, a continental island to the south of Australia. In 1960-1961, human-ignited wildfires occurred during an extremely dry summer that killed many A. cupressoides stands on the high plateau in the center of Tasmania. That fire year, coupled with subsequent regeneration failure, caused a loss of ca. 10% of the geographic extent of this endemic Tasmanian forest type. To provide historical context for these large-scale fire events, we (i) collected dendroecological, floristic, and structural data, (ii) documented the postfire survival and regeneration of A. cupressoides and co-occurring understory species, and (iii) assessed postfire understory plant community composition and flammability. We found that fire frequency did not vary following the arrival of European settlers, and that A. cupressoides populations were able to persist under a regime of low-to-mid severity fires prior to the 1960 fires. Our data indicate that the 1960 fires were (i) of greater severity than previous fires, (ii) herbivory by native marsupials may limit seedling survival in both burned and unburned A. cupressoides stands, and (iii) the loss of A. cupressoides populations is largely irreversible given the relatively high fuel loads of postfire vegetation communities that are dominated by resprouting shrubs. We suggest that the feedback between regeneration failure and increased flammability will be further exacerbated by a warmer and drier climate causing A. cupressoides to contract to the most fire-proof landscape settings.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Cupressaceae/crescimento & desenvolvimento , Ecossistema , Incêndios/história , Conservação dos Recursos Naturais/estatística & dados numéricos , História do Século XX , Dinâmica Populacional , Especificidade da Espécie , Tasmânia
11.
Ecology ; 88(11): 2891-902, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18051658

RESUMO

This study investigates the influence of climatic variability on subalpine forest fire occurrence in western Colorado during the AD 1600-2003 period. Interannual and multidecadal relationships between fire occurrence and the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO) were examined, in addition to the effects of phase interactions among these oscillations. Fires occurred during short-term periods of significant drought and extreme cool (negative) phases of ENSO and PDO and during positive departures from mean AMO index. At longer time scales, fires exhibited 20-year periods of synchrony with the cool phase of the PDO, and 80-year periods of synchrony with extreme warm (positive) phases of the AMO. Years of combined positive AMO and negative ENSO and PDO phases represent "triple whammies" that significantly increased the occurrence of drought-induced fires. Fires were synchronous with this phase combination over 0-30 year periods and distinctly asynchronous with the opposite phase combination. Overall, because fires are synchronous at supra-annual to multidecadal time scales with warm AMO events, particularly when combined with cool ENSO and PDO phases, this suggests that we may be entering a qualitatively different fire regime in the next few decades due to the recent shift in 1998 to a likely long-term warm AMO phase. Although uncertainty remains regarding the effects of CO2-induced warming at regional scales, given the multidecadal persistence of the AMO there is mounting evidence that the recent shift to the positive phase of the AMO will promote higher fire frequencies in the region.


Assuntos
Clima , Incêndios/estatística & dados numéricos , Cronologia como Assunto , Colorado , Desastres , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...