Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Signal ; 17(824): eadc9662, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377177

RESUMO

The IL-6-gp130-STAT3 signaling axis is a major regulator of inflammation. Activating mutations in the gene encoding gp130 and germline gain-of-function mutations in STAT3 (STAT3GOF) are associated with multi-organ autoimmunity, severe morbidity, and adverse prognosis. To dissect crucial cellular subsets and disease biology involved in activated gp130 signaling, the gp130-JAK-STAT3 axis was constitutively activated using a transgene, L-gp130, specifically targeted to T cells. Activating gp130 signaling in T cells in vivo resulted in fatal, early onset, multi-organ autoimmunity in mice that resembled human STAT3GOF disease. Female mice had more rapid disease progression than male mice. On a cellular level, gp130 signaling induced the activation and effector cell differentiation of T cells, promoted the expansion of T helper type 17 (TH17) cells, and impaired the activity of regulatory T cells. Transcriptomic profiling of CD4+ and CD8+ T cells from these mice revealed commonly dysregulated genes and a gene signature that, when applied to human transcriptomic data, improved the segregation of patients with transcriptionally diverse STAT3GOF mutations from healthy controls. The findings demonstrate that increased gp130-STAT3 signaling leads to TH17-driven autoimmunity that phenotypically resembles human STAT3GOF disease.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos , Humanos , Masculino , Feminino , Camundongos , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Autoimunidade/genética , Linfócitos T CD8-Positivos/metabolismo , Transdução de Sinais , Inflamação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
2.
Blood Adv ; 7(4): 469-481, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35917568

RESUMO

Proteasome inhibition is a highly effective treatment for multiple myeloma (MM). However, virtually all patients develop proteasome inhibitor resistance, which is associated with a poor prognosis. Hyperactive small ubiquitin-like modifier (SUMO) signaling is involved in both cancer pathogenesis and cancer progression. A state of increased SUMOylation has been associated with aggressive cancer biology. We found that relapsed/refractory MM is characterized by a SUMO-high state, and high expression of the SUMO E1-activating enzyme (SAE1/UBA2) is associated with poor overall survival. Consistently, continuous treatment of MM cell lines with carfilzomib (CFZ) enhanced SUMO pathway activity. Treatment of MM cell lines with the SUMO E1-activating enzyme inhibitor subasumstat (TAK-981) showed synergy with CFZ in both CFZ-sensitive and CFZ-resistant MM cell lines, irrespective of the TP53 state. Combination therapy was effective in primary MM cells and in 2 murine MM xenograft models. Mechanistically, combination treatment with subasumstat and CFZ enhanced genotoxic and proteotoxic stress, and induced apoptosis was associated with activity of the prolyl isomerase PIN1. In summary, our findings reveal activated SUMOylation as a therapeutic target in MM and point to combined SUMO/proteasome inhibition as a novel and potent strategy for the treatment of proteasome inhibitor-resistant MM.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Animais , Camundongos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Sumoilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Apoptose , Enzimas Ativadoras de Ubiquitina/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...