Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 635299, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326852

RESUMO

BACKGROUND AND AIMS: In response to global heating, accurate climate data are required to calculate climatic indices for long-term decisions about vineyard management, vineyard site selection, varieties planted and to predict phenological development. The availability of spatially interpolated climate data has the potential to make viticultural climate analyses possible at specific sites without the expense and uncertainty of collecting climate data within vineyards. The aim of this study was to compare the accuracy and precision of climatic indices calculated using an on-site climate sensor and an interpolated climate dataset to assess whether the effect of spatial variability in climate at this fine spatial scale significantly affects phonological modelling outcomes. METHODS AND RESULTS: Four sites comprising two topographically homogenous vineyards and two topographically diverse vineyards in three wine regions in Victoria (Australia) were studied across four growing seasons. A freely available database of interpolated Australian climate data based on government climate station records (Scientific Information for Land Owners, SILO) provided temperature data for grid cells containing the sites (resolution 0.05° latitude by 0.05° longitude, approximately 5 km × 5 km). In-vineyard data loggers collected temperature data for the same time period. The results indicated that the only significant difference between the two climate data sources was the minimum temperatures in the topographically varied vineyards where night-time thermal layering is likely to occur. CONCLUSION: The interpolated climate data closely matched the in-vineyard recorded maximum temperatures in all cases and minimum temperatures for the topographically homogeneous vineyards. However, minimum temperatures were not as accurately predicted by the interpolated data for the topographically complex sites. Therefore, this specific interpolated dataset was a reasonable substitute for in-vineyard collected data only for vineyard sites that are unlikely to experience night-time thermal layering. SIGNIFICANCE OF THE STUDY: Access to accurate climate data from a free interpolation service, such as SILO provides a valuable tool tomanage blocks or sections within vineyards more precisely for vineyards that do not have a weather station on site. Care, nevertheless, is required to account for minimum temperature discrepancies in topographically varied vineyards, due to the potential for cool air pooling at night, that may not be reflected in interpolated climate data.

2.
Biomolecules ; 12(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35053190

RESUMO

Sunburn is a physiological disorder that reduces grape quality and vineyard yield. It is the result of excessive sunlight and high temperatures. As climate change continues to increase air temperatures, reports of sunburn damage in vineyards worldwide are becoming more frequent. Grapes produce secondary metabolites (carotenoids, polyphenols and aroma compounds) to counter photooxidative stress and acclimate to higher radiation environments. This study evaluated changes in these compounds in during ripening when grapes were exposed post-flowering (ED) and at véraison (LD), and compared them to a nondefoliated control (ND). ND contained more α-terpineol and violaxanthin, and the defoliated treatments contained more zeaxanthin, ß-carotene, C6 compounds and flavonoids. ED berries adapted better to higher-light environments, displayed larger changes in secondary metabolite concentrations and lower levels of sunburn damage than LD berries did. The composition of berries with increasing sunburn damage was evaluated for the first time. Berries with no damage had the lowest concentrations of flavonoids and oxidized glutathione, and the highest concentrations of chlorophyll and α-terpineol. As damage increased, destruction of photosynthetic pigments, increase in polyphenols and loss of aroma compounds were evidenced. A significant effect of temperature and developmental stage on grape composition was also observed. This study provides a holistic overview of changes in secondary metabolites experienced by grape berries when exposed to excessive light, how these vary along development and how they affect sunburn incidence.


Assuntos
Queimadura Solar , Vitis , Flavonoides/metabolismo , Frutas/química , Polifenóis/análise , Queimadura Solar/metabolismo , Queimadura Solar/prevenção & controle
3.
Front Plant Sci ; 11: 604691, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488654

RESUMO

Sunburn is a physiological disorder that affects the visual and organoleptic properties of grapes. The appearance of brown and necrotic spots severely affects the commercial value of the fruit, and in extreme cases, significantly decreases yield. Depending on the severity of the damage and the driving factors, sunburn on grapes can be classified as sunburn browning (SB) or as sunburn necrosis (SN). Sunburn results from a combination of excessive photosynthetically active radiation (PAR) and UV radiation and temperature that can be exacerbated by other stress factors such as water deficit. Fruit respond to these by activating antioxidant defense mechanisms, de novo synthesis of optical screening compounds and heat-shock proteins as well as through morphological adaptation. This review summarizes the current knowledge on sunburn in grapes and compares it with relevant literature on other fruits. It also discusses the different factors affecting the appearance and degree of sunburn, as well as the biochemical response of grapes to this phenomenon and different potential mitigation strategies. This review proposes further directions for research into sunburn in grapes.

4.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783632

RESUMO

Climate models predict an increase in the frequency and duration of heatwaves with an increase in intensity already strongly evident worldwide. The aim of this work was to evaluate the effect of two heatwave-related parameters (intensity and duration) during berry ripening and identify a threshold for berry survival and flavonoid accumulation. A Doehlert experimental design was used to test three temperature intensities (maxima of 35, 46, and 54 °C) and five durations (3 to 39 h), with treatments applied at the bunch level shortly after véraison. Berry skin and seeds were analysed by liquid chromatography-triple quadrupole-mass spectrometry (LC-QqQ-MS) for flavonoids (flavonols, anthocyanins, free flavan-3-ols, and tannins). Berries exposed to 46 °C showed little difference compared to 35 °C. However, berries reaching temperatures around 54 °C were completely desiccated, and all flavonoids were significantly decreased except for skin flavonols on a per berry basis and seed tannins in most cases. Some compounds, such as dihydroxylated flavonoids and galloylated flavan-3-ols (free and polymerised), were in higher proportion in damaged berries suggesting they were less degraded or more synthesised upon heating. Overall, irreversible berry damages and substantial compositional changes were observed and the berry survival threshold was estimated at around 50-53 °C for mid-ripe Shiraz berries, regardless of the duration of exposure.


Assuntos
Antocianinas/análise , Flavonoides/análise , Flavonóis/análise , Frutas/química , Temperatura Alta/efeitos adversos , Taninos/análise , Vitis/química , Antocianinas/química , Antocianinas/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Flavonóis/química , Flavonóis/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Espectrometria de Massas , Sementes/química , Taninos/metabolismo , Fatores de Tempo , Vitis/fisiologia
5.
BMC Plant Biol ; 19(1): 535, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795928

RESUMO

BACKGROUND: Elucidating the effect of source-sink relations on berry composition is of interest for wine grape production as it represents a mechanistic link between yield, photosynthetic capacity and wine quality. However, the specific effects of carbohydrate supply on berry composition are difficult to study in isolation as leaf area or crop adjustments can also change fruit exposure, or lead to compensatory growth or photosynthetic responses. A new experimental system was therefore devised to slow berry sugar accumulation without changing canopy structure or yield. This consisted of six transparent 1.2 m3 chambers to enclose large pot-grown grapevines, and large soda-lime filled scrubbers that reduced carbon dioxide (CO2) concentration of day-time supply air by approximately 200 ppm below ambient. RESULTS: In the first full scale test of the system, the chambers were installed on mature Shiraz grapevines for 14 days from the onset of berry sugar accumulation. Three chambers were run at sub-ambient CO2 for 10 days before returning to ambient. Canopy gas exchange, and juice hexose concentrations were determined. Net CO2 exchange was reduced from 65.2 to 30 g vine- 1 day- 1, or 54%, by the sub-ambient treatment. At the end of the 10 day period, total sugar concentration was reduced from 95 to 77 g L- 1 from an average starting value of 23 g L- 1, representing a 25% reduction. Scaling to a per vine basis, it was estimated that 223 g of berry sugars accumulated under ambient supply compared to 166 g under sub-ambient, an amount equivalent to 50 and 72% of total C assimilated. CONCLUSIONS: Through supply of sub-ambient CO2 using whole canopy gas exchange chambers system, an effective method was developed for reducing photosynthesis and slowing the rate of berry sugar accumulation without modifying yield or leaf area. While in this case developed for further investigations of grape and wine composition, the system has broader applications for the manipulation and of study of grapevine source-sink relations.


Assuntos
Dióxido de Carbono/metabolismo , Produção Agrícola/métodos , Açúcares/metabolismo , Vitis/fisiologia , Frutas/química , Fotossíntese/fisiologia , Folhas de Planta/fisiologia
6.
J Exp Bot ; 70(2): 397-423, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30388247

RESUMO

Climate change scenarios predict an increase in average temperatures and in the frequency, intensity, and length of extreme temperature events in many wine regions around the world. In already warm and hot regions, such changes may compromise grape growing and the production of high quality wine as high temperature has been found to affect berry composition critically. Most recent studies focusing on the sole effect of temperature, separated from light and water, on grape berry composition found that high temperature affects a wide range of metabolites, and in particular flavonoids-key compounds for berry and wine quality. A decrease in total anthocyanins is reported in most cases, and appears to be directly associated with high temperature. Changes in anthocyanin composition, and flavonol and proanthocyanidin responses are however less consistent, and reflect the complexity of the underlying biosynthetic pathways and diversity of experimental treatments that have been used in these studies. This review examines the impact of high temperature on the biosynthesis, accumulation, and degradation of flavonoids, and attempts to reconcile the diversity of responses in relation to the latest understanding of flavonoid chemistry and molecular regulation.


Assuntos
Calor Extremo , Flavonoides/biossíntese , Frutas/metabolismo , Vitis/metabolismo
7.
Physiol Plant ; 164(2): 120-133, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29498442

RESUMO

Leaves are an important contributor toward berry sugar and nitrogen (N) accumulation, and leaf area, therefore, affects fruit composition during grapevine (Vitis vinifera) berry ripening. The aim of this study was to investigate the impact of leaf presence on key berry quality attributes in conjunction with the accumulation of primary berry metabolites. Shortly after the start of véraison (berry ripening), potted grapevines were defoliated (total defoliation and 25% of the control), and the accumulation of berry soluble solids, N and anthocyanins were compared to that of a full leaf area control. An untargeted approach was undertaken to measure the content in primary metabolites by gas chromatography/mass spectrometry. Partial and full defoliation resulted in reduced berry sugar and anthocyanin accumulation, while total berry N content was unaffected. The juice yeast assimilable N (YAN), however, increased upon partial and full defoliation. Remobilized carbohydrate reserves allowed accumulation of the major berry sugars during the absence of leaf photoassimilation. Berry anthocyanin biosynthesis was strongly inhibited by defoliation, which could relate to the carbon (C) source limitation and/or increased bunch exposure. Arginine accumulation, likely resulting from reserve translocation, contributed to increased YAN upon defoliation. Furthermore, assessing the implications on various products of the shikimate pathway suggests the C flux through this pathway to be largely affected by leaf source limitation during fruit maturation. This study provides a novel investigation of impacts of leaf C and N source presence during berry maturation, on the development of key berry quality parameters as underlined by alterations in primary metabolism.


Assuntos
Antocianinas/metabolismo , Carbono/metabolismo , Frutas/metabolismo , Nitrogênio/metabolismo , Folhas de Planta/metabolismo , Vitis/metabolismo
8.
J Plant Physiol ; 222: 86-93, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29407553

RESUMO

Some plant species demonstrate a pronounced 24 h rhythm in fine root growth but the endogenous and exogenous factors that regulate these diel cycles are unclear. Photoperiod and temperature are known to interact with diel patterns in shoot growth but it is uncertain how these environmental factors are interrelated with below-ground growth. In this particular study, the fine root system of two grapevine species was monitored over a period of ten days with a high resolution scanner, under constant soil moisture and three different photoperiod regimes. Pronounced diel rhythms in shoot and root growth rates were apparent under a fixed 14 h photoperiod. Maximal root growth rate occurred 1-2 h prior to- and until 2 h after the onset of darkness. Subsequently, during the latter part of the dark period, root growth rate decreased and reached minimal values at the onset of the light period. Relative to 22 °C, exposure to a 30 °C air and soil temperature halved root growth but stimulated shoot growth. Notably, the shoot extension rate peak shifted from late afternoon to midnight at this higher temperature zone. When plants were exposed to a delayed photoperiod or progressively shortening photoperiod, the diel changes in root growth rate followed the same pattern as in the fixed photoperiod, regardless of whether the plant was in light or dark. This suggests that light was not the predominant trigger for stimulating root elongation. Conversely, shoot growth rates were not fixed to a clock, with minimum growth consistently at the completion of the dark period regardless of the time of day. In summary, fine root growth of grapevines was found to have a pronounced diel pattern and an endogenous circadian clock appears to orchestrate this rhythm. Soil temperature modified the amplitude of this pattern, but we argue here that, as evidenced from exhausted starch reserves within root tips by early morning, carbon supply from photosynthesis is also required to maintain maximum root growth.


Assuntos
Ritmo Circadiano/fisiologia , Fotoperíodo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Temperatura , Vitis/fisiologia , Vitis/crescimento & desenvolvimento
9.
Physiol Plant ; 161(4): 434-450, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28692131

RESUMO

Grapevine (Vitis vinifera) roots and leaves represent major carbohydrate and nitrogen (N) sources, either as recent assimilates, or mobilized from labile or storage pools. This study examined the response of root and leaf primary metabolism following defoliation treatments applied to fruiting vines during ripening. The objective was to link alterations in root and leaf metabolism to carbohydrate and N source functioning under conditions of increased fruit sink demand. Potted grapevine leaf area was adjusted near the start of véraison to 25 primary leaves per vine compared to 100 leaves for the control. An additional group of vines were completely defoliated. Fruit sugar and N content development was assessed, and root and leaf starch and N concentrations determined. An untargeted GC/MS approach was undertaken to evaluate root and leaf primary metabolite concentrations. Partial and full defoliation increased root carbohydrate source contribution towards berry sugar accumulation, evident through starch remobilization. Furthermore, root myo-inositol metabolism played a distinct role during carbohydrate remobilization. Full defoliation induced shikimate pathway derived aromatic amino acid accumulation in roots, while arginine accumulated after full and partial defoliation. Likewise, various leaf amino acids accumulated after partial defoliation. These results suggest elevated root and leaf amino N source activity when leaf N availability is restricted during fruit ripening. Overall, this study provides novel information regarding the impact of leaf source restriction, on metabolic compositions of major carbohydrate and N sources during berry maturation. These results enhance the understanding of source organ carbon and N metabolism during fruit maturation.


Assuntos
Frutas/metabolismo , Raízes de Plantas/metabolismo , Vitis/metabolismo , Aminoácidos/metabolismo , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Frutas/fisiologia , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/fisiologia , Vitis/fisiologia
10.
J Plant Res ; 130(5): 873-883, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28421372

RESUMO

The grapevine inflorescence is a determinate panicle and as buds emerge, shoot, flower and rachis development occur simultaneously. The growth and architecture of the rachis is determined by genetic and environmental factors but here we examined the role of flower and leaf number as well as hormones on its elongation and vascular development. The consequences of rachis morphology and vascular area on berry size and composition were also assessed. One week prior to anthesis, Merlot and Cabernet Sauvignon field vines were exposed to manual flower removal, exogenous plant growth regulators or pre-bloom leaf removal. Manual removal of half the flowers along the vertical axis of the inflorescence resulted in a shorter rachis in both cultivars. Conversely, inflorescences treated with gibberellic acid (GA3) and the synthetic cytokinin, 6-benzylaminopurine (BAP) resulted in a longer rachis while pre-bloom removal of all leaves on the inflorescence-bearing shoot did not alter rachis length relative to untreated inflorescences. Across the treatments, the cross-sectional areas of the conducting xylem and phloem in the rachis were positively correlated to rachis girth, flower number at anthesis, bunch berry number, bunch berry fresh mass and bunch sugar content at harvest. Conversely, average berry size and sugar content were not linked to rachis vascular area. These data indicate that the morphological and vascular development of the rachis was more responsive to flower number and plant growth regulators than to leaf removal.


Assuntos
Flores/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/farmacologia , Vitis/crescimento & desenvolvimento , Compostos de Benzil/farmacologia , Metabolismo dos Carboidratos , Flores/efeitos dos fármacos , Flores/fisiologia , Frutas/efeitos dos fármacos , Frutas/crescimento & desenvolvimento , Frutas/fisiologia , Giberelinas/farmacologia , Inflorescência/efeitos dos fármacos , Inflorescência/crescimento & desenvolvimento , Inflorescência/fisiologia , Floema/efeitos dos fármacos , Floema/crescimento & desenvolvimento , Floema/fisiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/fisiologia , Purinas/farmacologia , Vitis/efeitos dos fármacos , Vitis/fisiologia , Xilema/efeitos dos fármacos , Xilema/crescimento & desenvolvimento , Xilema/fisiologia
11.
Plant Physiol Biochem ; 108: 519-529, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27596018

RESUMO

The rachis, the structural framework of the grapevine (Vitis vinifera L.) inflorescence (and subsequent bunch), consists of a main axis and one or more orders of lateral branches with the flower-bearing pedicels at their fine tips. The rachis is crucial both for support, and transport from the shoot. Earlier suggestions that the flowers per se affect normal rachis development are investigated further in this study. Different percentages (0, 25, 50, 75 or 100) of flowers were removed manually one week before anthesis on field-grown vines. Treatment effects on subsequent rachis development (curvature, vitality, anatomy, starch deposit) were assessed. Sections, both fixed and embedded, and fresh hand-cut were observed by fluorescence and bright-field optics after appropriate staining. Emphasis was on measurement of changes in cross-sectional area of secondary xylem and phloem, and on maturation of fibres and periderm. Specific defects in rachis development were dependent on the percent and location of flower removal one week prior to anthesis. The rachises curved inwards where most of the flowers were removed. When fully de-flowered, they became progressively necrotic from the laterals back to the primary axes and from the distal to the proximal end of those axes, with a concurrent disorganisation of their anatomy. A few remaining groups of flowers prevented desiccation and abscission of the rachis axes proximal to the group, but not distally. Flower removal (50%) reduced rachis elongation, while 75% removal reduced xylem and phloem area and delayed phloem fibre and periderm development. 75% flower removal did not affect starch present in the rachis during berry development. Developing flowers affect the growth and vitality of the rachis and the development of its vascular and support structures. The extent of these effects depends on the cultivar and the number and position of flowers remaining after some are removed one week before anthesis.


Assuntos
Flores/crescimento & desenvolvimento , Vitis/crescimento & desenvolvimento , Inflorescência/anatomia & histologia , Inflorescência/crescimento & desenvolvimento , Tamanho do Órgão , Floema , Vitis/fisiologia , Xilema
12.
Plant Physiol Biochem ; 105: 45-54, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27082989

RESUMO

Amino acids are essential to grape berry and seed development and they are transferred to the reproductive structures through the phloem and xylem from various locations within the plant. The diurnal and seasonal dynamics of xylem and phloem amino acid composition in the leaf petiole and bunch rachis of field-grown Cabernet Sauvignon are described to better understand the critical periods for amino acid import into the berry. Xylem sap was extracted by the centrifugation of excised leaf petioles and rachises, while phloem exudate was collected by immersing these structures in an ethylenediaminetetraacetic acid (EDTA) buffer. Glutamine and glutamic acid were the predominant amino acids in the xylem sap of both grapevine rachises and petioles, while arginine and glycine were the principal amino acids of the phloem exudate. The amino acid concentrations within the xylem sap and phloem exudate derived from these structures were greatest during anthesis and fruit set, and a second peak occurred within the rachis phloem at the onset of ripening. The concentrations of the amino acids within the phloem and xylem sap of the rachis were highest just prior to or after midnight while the flow of sugar through the rachis phloem was greatest during the early afternoon. Sugar exudation rates from the rachis was greater than that of the petiole phloem between anthesis and berry maturity. In summary, amino acid and sugar delivery through the vasculature to grape berries fluctuates over the course of the day as well as through the season and is not necessarily related to levels near the source.


Assuntos
Aminoácidos/metabolismo , Floema/metabolismo , Exsudatos de Plantas/metabolismo , Vitis/metabolismo , Xilema/metabolismo , Carboidratos/análise , Ritmo Circadiano , Estações do Ano
13.
Int J Biometeorol ; 60(9): 1405-22, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26826103

RESUMO

Carbohydrates are accumulated within the perennial structure of grapevines when their production exceeds the requirements of reproduction and growth. The period between harvest and leaf-fall (the post-harvest period) is a key period for carbohydrate accumulation in relatively warmer grape-growing regions. The level of carbohydrate reserves available for utilisation in the following season has an important effect on canopy growth and yield potential and is therefore an important consideration in vineyard management. In a warming climate, the post-harvest period is lengthening and becoming warmer, evidenced through studies in wine regions worldwide that have correlated recent air temperature increases with changing grapevine phenology. Budbreak, flowering, veraison, and harvest have all been observed to be occurring earlier than in previous decades. Additionally, the final stage of the grapevine phenological cycle, leaf-fall, occurs later. This study explored the potential for increased post-harvest carbohydrate accumulation by modelling heat accumulation following harvest dates for the recent climate (1975-2004) and two warmer climate projections with mean temperature anomalies of +1.26 and +2.61 °C. Summaries of post-harvest heat accumulation between harvest and leaf-fall were produced for each of Australia's Geographical Indications (wine regions) to provide comparisons from the base temperatures to projected warmer conditions across a range of climates. The results indicate that for warmer conditions, all regions observe earlier occurring budbreak and harvest as well as increasing post-harvest growing degree days accumulation before leaf-fall. The level of increase varies depending upon starting climatic condition, with cooler regions experiencing the greatest change.


Assuntos
Mudança Climática , Vitis/crescimento & desenvolvimento , Austrália , Modelos Teóricos , Estações do Ano , Temperatura
14.
Anal Chim Acta ; 732: 16-25, 2012 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-22688030

RESUMO

Predictions of grapevine yield and the management of sugar accumulation and secondary metabolite production during berry ripening may be improved by monitoring nitrogen and starch reserves in the perennial parts of the vine. The standard method for determining nitrogen concentration in plant tissue is by combustion analysis, while enzymatic hydrolysis followed by glucose quantification is commonly used for starch. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FT-IR) combined with chemometric modelling offers a rapid means for the determination of a range of analytes in powdered or ground samples. ATR-FT-IR offers significant advantages over combustion or enzymatic analysis of samples due to the simplicity of instrument operation, reproducibility and speed of data collection. In the present investigation, 1880 root and wood samples were collected from Shiraz, Semillon and Riesling vineyards in Australia and Germany. Nitrogen and starch concentrations were determined using standard analytical methods, and ATR-FT-IR spectra collected for each sample using a Bruker Alpha instrument. Samples were randomly assigned to either calibration or test data sets representing two thirds and one third of the samples respectively. Signal preprocessing included extended multiplicative scatter correction for water and carbon dioxide vapour, standard normal variate scaling with second derivative and variable selection prior to regression. Excellent predictive models for percent dry weight (DW) of nitrogen (range: 0.10-2.65% DW, median: 0.45% DW) and starch (range: 0.25-42.82% DW, median: 7.77% DW) using partial least squares (PLS) or support vector machine (SVM) analysis for linear and nonlinear regression respectively, were constructed and cross validated with low root mean square errors of prediction (RMSEP). Calibrations employing SVM-regression provided the optimum predictive models for nitrogen (R(2)=0.98 and RMSEP=0.07% DW) compared to PLS regression (R(2)=0.97 and RMSEP=0.08% DW). The best predictive models for starch was obtained using PLS regression (R(2)=0.95 and RSMEP=1.43% DW) compared to SVR (R(2)=0.95; RMSEP=1.56% DW). The RMSEP for both nitrogen and starch is below the reported seasonal flux for these analytes in Vitis vinifera. Nitrogen and starch concentrations in grapevine tissues can thus be accurately determined using ATR-FT-IR, providing a rapid method for monitoring vine reserve status under commercial grape production.


Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Vitis/química , Análise dos Mínimos Quadrados , Nitrogênio/análise , Análise de Regressão , Amido/análise , Máquina de Vetores de Suporte
15.
Funct Plant Biol ; 38(11): 899-909, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32480947

RESUMO

In cultivated grapevines (Vitis vinifera L.), suboptimal photoassimilatory conditions during flowering can lead to inflorescence necrosis and shedding of flowers and young ovaries and, consequently, poor fruit set. However, before this study it was not known whether carbohydrate reserves augment fruit set when concurrent photoassimilation is limited. Carbohydrate reserves are most abundant in grapevine roots and soil temperature moderates their mobilisation. Accordingly, we grew potted Chardonnay grapevines in soil at 15°C (cool) or 26°C (warm) from bud break to the onset of flowering to manipulate root carbohydrate reserve status. Then to induce photoassimilatory responses we subjected the plants to low (94µmolmol-1) CO2 or ambient (336µmolmol-1) CO2 atmospheres during fruit setting. Analyses of photoassimilation and biomass and carbohydrate reserve distribution confirmed that fruit set was limited by concurrent photoassimilation. Furthermore, the availability of current photoassimilates for inflorescence development and fruit set was conditioned by the simultaneous demands for shoot and root growth, as well as the restoration of root carbohydrate reserves. Results indicate that great seasonal variability in grapevine fruit set is a likely response of cultivated grapevines to photoassimilatory stresses, such as shading, defoliation and air temperature and to variations in carbohydrate reserve status before flowering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...