Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38006134

RESUMO

Hydrogen is recognized as a significant potential energy source and energy carrier for the future. On the one hand, storing hydrogen is a challenging task due to its low volumetric density, on the other hand, a particular type of hydrogen in the form of a liquid can be used to store large quantities of hydrogen at ambient conditions in thermoplastic tanks. But storing hydrogen in this form for a long time in polymer tanks affects the physical and chemical properties of the liner. In the current automotive industry, high-density polyethylene (HDPE) has already been used in existing fuel tank applications. However long-term exposure to fuels leads to the permeation of hydrocarbons into the polymers, resulting in a loss of mechanical properties and reducing the efficiency of fuel cells (FC) in automotive applications. Additionally, facing material shortages and a limited supply of resin leads to an increase in the cost of the material. Therefore, an alternative material is being searched for, especially for hydrogen fuel tank applications. In this study, two semi-crystalline thermoplastics, HDPE and polyketone (POK), were compared, which were exposed to a selected liquid organic hydrogen carrier (LOHC) at 25 °C and 60 °C for up to 500 h in an enclosed chamber, to measure their fuel up-take. A short analysis was carried out using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and mechanical testing to understand the influence of the LOHC on the polymer over time. Fuel sorption and tensile properties showed a plasticizing effect on HDPE. The material degradation was more pronounced for the aged samples of HDPE in comparison to POK. As expected, thermal aging was increased at 60 °C. The fuel absorption of POK was lower compared to HDPE. A slight increase in crystallinity was observed in POK due to the aging process that led to changes in mechanical properties. Both HDPE and POK samples did not show any chemical changes during the aging process in the oven at 25 °C and 60 °C.

2.
Polymers (Basel) ; 15(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37765639

RESUMO

Additive manufacturing (AM) nowadays has become a supportive method of traditional manufacturing. In particular, the medical and healthcare industry can profit from these developments in terms of personalized design and batches ranging from one to five specimens overall. In terms of polymers, polyolefins are always an interesting topic due to their low prices, inert chemistry, and crystalline structure resulting in preferable mechanical properties. Their semi-crystalline nature has some advantages but are challenging for AM due to their shrinkage and warping, resulting in geometrical inaccuracies or even layer detaching during the process. To tackle these issues, process parameter optimization is vital, with one important parameter to be studied more in detail, the print envelope temperature. It is well known that higher print envelope temperatures lead to better layer adhesion overall, but this investigation focuses on the mechanical properties and resulting morphology of a semi-crystalline thermoplastic polyolefin. Further, two different AM technologies, namely material jetting (ARBURG plastic freeforming-APF) and filament-based material extrusion, were studied and compared in detail. It was shown that higher print envelope temperatures lead to more isotropic behavior based on an evenly distributed morphology but results in geometrical inaccuracies since the material is kept in a molten state during printing. This phenomenon especially could be seen in the stress and strain values at break at high elongations. Furthermore, a different crystal structure can be achieved by setting a specific temperature and printing time, also resulting in peak values of certain mechanical properties. In comparison, better results could be archived by the APF technology in terms of mechanical properties and homogeneous morphology. Nevertheless, real isotropic part behavior could not be managed which was shown by the specimen printed vertically. Hence, a sweet spot between geometrical and mechanical properties still has to be found.

3.
Polymers (Basel) ; 15(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37514397

RESUMO

The current study presents the effect of the backbone as an important binder component on the mechanical, rheological, and thermal properties of Aluminium (Al) alloy feedstocks. A thermoplastic elastomer (TPE) main binder component was blended with either polypropylene (PP), grafted-maleic anhydride-PP (PPMA), or grafted-maleic anhydride-PPwax (PPMAwax) plus PP, as the backbone. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were performed to investigate the thermal properties of binder systems and feedstocks. Fourier-transform infrared (FTIR) spectroscopy was used to study the chemical interaction between the binder and the Al alloy. After making feedstock filaments, tensile tests, scanning electron microscopy (SEM), and fused filament fabrication (FFF) printing were done. The results showed that although the PP printability was acceptable, the best mechanical properties and printed quality can be achieved by PPMA. TGA test showed that all binder systems in the feedstocks could be removed completely around 500 °C. From FTIR, the possibility of chemical reactions between Al alloy particles and maleic anhydride groups on the grafted PP backbone could explain the better dispersion of the mixture and higher mechanical properties. Tensile strength in PP samples was 3.4 MPa which was improved 1.8 times using PPMA as the backbone.

4.
Polymers (Basel) ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514536

RESUMO

Measuring the shear viscosity of polymeric melts is an extensive effort frequently performed in high-pressure capillary rheometers, where the pressures required to push the melt through a capillary at various temperatures and volumetric flow rates are recorded. Then, the viscosity values are obtained through Bagley and Weissenberg-Rabinowitsch corrections involving parameter fitting. However, uncertainties in those conversions due to pressure variations and measurement inaccuracies (random errors) affect the accuracy of the consequently calculated viscosities. This paper proposes quantifying them through a propagation of uncertainties calculation. This has been experimentally demonstrated for a polycarbonate melt. In addition, the derived viscosity uncertainties were used for the weighted residual sum of squares parameter estimation of the Cross-WLF viscosity model and compared with the coefficients obtained using the standard residual sum of squares minimization approach. The motivation was that, by comparison, individual poorly measured viscosity values should have a less negative impact on the overall fit quality of the former. For validation, the rheometer measurements were numerically simulated with both fits. The simulations based on the Cross-WLF fit, including the derived viscosity uncertainties, matched the measured pressures ~16% more closely for shear rates below 1500 1/s. Considering the uncertainties led to more precise coefficients. However, both fits showed substantial deviations at higher shear rates, probably due to substantial non-isothermal flow conditions that prevailed during these measurements. A capillary rheometer experiment was also simulated using arbitrarily chosen Cross-WLF parameters to exclude such systematic errors. A normally distributed error was then applied to the simulated pressures before re-fitting the parameters. Again, taking advantage of the derived viscosity uncertainties, the fit could recover the initial parameters better.

5.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433087

RESUMO

This work aims to better understand the type of thermoplastic binders required to produce highly loaded copper filaments that can be successfully printed via low-cost filament-based material extrusion (MEX). Compounding feedstock material with 55 vol.% of copper and three multi-component binder systems has been performed. The MEX behavior of these feedstocks was evaluated by depositing material at different speeds and appropriately selecting the extrusion temperature depending on the binder composition. The rest of the MEX parameters remained constant to evaluate the printing quality for the different feedstocks. Printable filaments were produced with low ovality and good surface quality. The filaments showed good dispersion of the powder and polymeric binder system in SEM analysis. The feedstock mechanical properties, i.e., the tensile strength of the filament, were sufficient to ensure proper feeding in the MEX machine. The viscosity of the feedstock systems at the adjusted printing temperatures lies in the range of 102-103 Pa·s at the shear rate of 100-1000 s-1, which appears to be sufficient to guarantee the correct flowability and continuous extrusion. The tensile properties vary greatly (e.g., ultimate tensile strength 3-9.8 MPa, elongation at break 1.5-40.5%), and the most fragile filament could not be reliably printed at higher speeds. Micrographs of the cross-section of printed parts revealed that as the printing speed increased, the porosity was minimized because the volumetric flow of the feedstock material increased, which can help to fill pores. This study offers new insights into the feedstock requirements needed to produce low-cost intricate copper components of high quality in a reliable and efficient manner. Such components can find many applications in the electronics, biomedical, and many other industries.

6.
Polymers (Basel) ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297981

RESUMO

Predicting the curing behaviour of industrially employed elastomeric compounds under typical processing conditions in a reliable and scientifically driven way is important for rubber processing simulation routines, such as injection moulding. Herein, a rubber process analyser was employed to study the crosslinking kinetics of solid silicone rubber based on the concentration of dicumylperoxide. A model was proposed to describe the optimal cure time variation with peroxide concentration and temperature, based on the analysis of processing parameters applying kinetic and thermodynamic judgments. Additionally, the conversion rate was described with the aid of a phenomenological model, and the effect of dicumylperoxide concentration on the final crosslink state was investigated using kinetic and thermodynamic explanations. Optimal curing time was affected both by temperature and dicumylperoxide concentration. However, the effects were less pronounced for high temperatures (>170 ∘C) and high concentrations (>0.70 phr). A limit on the crosslink state was detected, meaning that the dicumylperoxide capacity to crosslink the silicone network is restricted by the curing mechanism. Curing restrictions were presumed to be primarily thermodynamic, based on the proton abstraction mechanism that drives the crosslinking reaction. In addition to providing more realistic crosslinking models for rubber injection moulding simulation routines, the results of this study may also explain the chemical behaviour of organic peroxides widely used for silicone crosslinking.

7.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080728

RESUMO

The good interaction between the ceramic powder and the binder system is vital for ceramic injection molding and prevents the phase separation during processing. Due to the non-polar structure of polyolefins such as high-density polyethylene (HDPE) and the polar surface of ceramics such as zirconia, there is not appropriate adhesion between them. In this study, the effect of adding high-density polyethylene grafted with acrylic acid (AAHDPE), with high polarity and strong adhesion to the powder, on the rheological, thermal and chemical properties of polymer composites highly filled with zirconia and feedstocks was evaluated. To gain a deeper understanding of the effect of each component, formulations containing different amounts of HDPE and or AAHDPE, zirconia and paraffin wax (PW) were prepared. Attenuated total reflection spectroscopy (ATR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and rotational and capillary rheology were used for the characterization of the different formulations. The ATR analysis revealed the formation of hydrogen bonds between the hydroxyl groups on the zirconia surface and AAHDPE. The improved powder-binder adhesion in the formulations with more AAHDPE resulted in a better powder dispersion and homogeneous mixtures, as observed by SEM. DSC results revealed that the addition of AAHDPE, PW and zirconia effect the melting and crystallization temperature and crystallinity of the binder, the polymer-filled system and feedstocks. The better powder--binder adhesion and powder dispersion effectively decreased the viscosity of the highly filled polymer composites and feedstocks with AAHDPE; this showed the potential of grafted polymers as binders for ceramic injection molding.

8.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614718

RESUMO

Powder injection molding (PIM) is a well-known technique to manufacture net-shaped, complicated, macro or micro parts employing a wide range of materials and alloys. Depending on the pressure applied to inject the feedstock, this process can be separated into low-pressure (LPIM) and high-pressure (HPIM) injection molding. Although the LPIM and HPIM processes are theoretically similar, all steps have substantial differences, particularly feedstock preparation, injection, and debinding. After decades of focusing on HPIM, low-viscosity feedstocks with improved flowability have recently been produced utilizing low-molecular-weight polymers for LPIM. It has been proven that LPIM can be used for making parts in low quantities or mass production. Compared to HPIM, which could only be used for the mass production of metallic and ceramic components, LPIM can give an outstanding opportunity to cover applications in low or large batch production rates. Due to the use of low-cost equipment, LPIM also provides several economic benefits. However, establishing an optimal binder system for all powders that should be injected at extremely low pressures (below 1 MPa) is challenging. Therefore, various defects may occur throughout the mixing, injection, debinding, and sintering stages. Since all steps in the process are interrelated, it is important to have a general picture of the whole process which needs a scientific overview. This paper reviews the potential of LPIM and the characteristics of all steps. A complete academic and research background survey on the applications, challenges, and prospects has been indicated. It can be concluded that although many challenges of LPIM have been solved, it could be a proper solution to use this process and materials in developing new applications for technologies such as additive manufacturing and processing of sensitive alloys.

9.
Polymers (Basel) ; 13(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34578097

RESUMO

The thermal properties of the mold influence the cooling situation in the injection molding process. While there are experimental studies investigating the influence of special mold materials, they are limited to few polymers. In this work, an extensive parameter study with the simulation software Autodesk Moldflow Insight was performed to analyze the influence of the polymer itself on the impact of the mold steel on cycle time and warpage. The investigated part was a box with two thickness variations. A conventional mold steel was compared with a steel grade featuring approximately double the thermal conductivity. Simulations were performed with 18 polymers covering the most common material families. The main finding of this study was that the influence of the higher mold conductivity on cycle time ranged from an almost negligible reduction (3%) up to a strong effect (24%), depending mainly on the used polymers, but also on the part thickness. For the cycle time reduction, a correlation was found, with the melt, mold and ejection temperature being the dominant influencing factors of the polymers. With this correlation, it was possible to estimate the potential of cycle time reduction for other polymers. The simulations also showed a positive influence of the higher mold thermal conductivity on part warpage.

10.
Polymers (Basel) ; 12(11)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198390

RESUMO

The Arburg Plastic Freeforming process (APF) is a unique additive manufacturing material jetting method. In APF, a thermoplastic material is supplied as pellets, melted and selectively deposited as droplets, enabling the use of commercial materials in their original shape instead of filaments. The medical industry could significantly benefit from the use of additive manufacturing for the onsite fabrication of customized medical aids and therapeutic devices in a fast and economical way. In the medical field, the utilized materials need to be certified for such applications and cannot be altered in any way to make them printable, because modifications annul the certification. Therefore, it is necessary to modify the processing conditions rather than the materials for successful printing. In this research, a medical-grade poly(methyl methacrylate) was analyzed. The deposition parameters were kept constant, while the drop aspect ratio, discharge rate, melt temperatures, and build chamber temperature were varied to obtain specimens with different geometrical accuracy. Once satisfactory geometrical accuracy was obtained, tensile properties of specimens printed individually or in batches of five were tested in two different orientations. It was found that parts printed individually with an XY orientation showed the highest tensile properties; however, there is still room for improvement by optimizing the processing conditions to maximize the mechanical strength of printed specimens.

11.
Polymers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764496

RESUMO

This work addresses the topic of extrusion-based additive manufacturing (filament-based material extrusion) of patient-specific biofunctional maxillofacial implants. The technical approach was chosen to overcome the shortcomings of medically established fabrication processes such as a limited availability of materials or long manufacturing times. The goal of the work was a successful fabrication of basic implants for defect reconstruction. The underlying vision is the implants' clinic-internal and operation-accompanying application. Following a literature search, a material selection was conducted. Digitally prepared three-dimensional (3D) models dealing with two representative mandible bone defects were printed based on the material selection. An ex-vivo model of the implant environment evaluated dimensional and fitting traits of the implants. Glycol-modified PET (PETG) and thermoplastic polyurethane (TPU) were finally selected. These plastics had high cell acceptance, good mechanical properties, and optimal printability. The subsequent fabrication process yielded two different implant strategies: the standard implant made of PETG with a build-up rate of approximately 10 g/h, and the biofunctional performance implant with a TPU shell and a PETG core with a build-up rate of approximately 4 g/h. The standard implant is meant to be intraoperatively applied, as the print time is below three hours even for larger skull defects. Standard implants proved to be well fitting, mechanically stable and cleanly printed. In addition, the hybrid implant showed particularly cell-friendly behavior due to the chemical constitution of the TPU shell and great impact stability because of the crack-absorbing TPU/PETG combination. This biofunctional constellation could be used in specific reconstructive patient cases and is suitable for pre-operative manufacturing based on radiological image scans of the defect. In summary, filament-based material extrusion has been identified as a suitable manufacturing method for personalized implants in the maxillofacial area. A further clinical and mechanical study is recommended.

12.
Materials (Basel) ; 13(14)2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679838

RESUMO

The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.

13.
Materials (Basel) ; 13(3)2020 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046236

RESUMO

Fused filament fabrication (FFF) combined with debinding and sintering could be an economical process for three-dimensional (3D) printing of metal parts. In this paper, compounding, filament making, and FFF processing of feedstock material with 55% vol. of 17-4PH stainless steel powder in a multicomponent binder system are presented. The experimental part of the paper encompasses central composite design for optimization of the most significant 3D printing parameters (extrusion temperature, flow rate multiplier, and layer thickness) to obtain maximum tensile strength of the 3D-printed specimens. Here, only green specimens were examined in order to be able to determine the optimal parameters for 3D printing. The results show that the factor with the biggest influence on the tensile properties was flow rate multiplier, followed by the layer thickness and finally the extrusion temperature. Maximizing all three parameters led to the highest tensile properties of the green parts.

14.
Polymers (Basel) ; 11(9)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505872

RESUMO

The aim of this study was the investigation of the use of modified talcum for supporting crosslinking and as novel nucleating agent for physical foaming of polyethylene. For the modification of the talcum, a thermal initiator was linked to the talcum surface. During the extrusion process, the initiator decomposes, and gas and radicals are formed. The gas generates the nucleation of cells and the radicals support the crosslinking process between the polymer chains. The modification of the talcum was performed in three steps: The first step was the grafting of alkoxysilanes onto the talcum surface. The second step was the chlorination of the thermal initiator for an easier linkage, and the last step was the linking between the initiator and the silanes grafted onto the talcum surface. For this study, two investigations were carried out. One investigation was the analysis of the crosslinking effect with the modified talcum. For this purpose, polyethylene plates were compression molded and the viscoelastic properties were measured with a parallel plate rheometer. The use of the modified talcum led to a higher crosslinking density. The second investigation was the physical foaming experiment in an extrusion process with nitrogen as blowing agent using both a pure and the modified talcum as nucleating agents. The foamed samples were characterized in terms of density, cell size and cell density, and compared with each other. The blend with the modified nucleating agent indicated a foam structure with a smaller mean cell size and a lower density compared to the use of the pristine nucleating agent.

15.
Polymers (Basel) ; 11(8)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394766

RESUMO

Due to a lack of long-term experience with burgeoning material extrusion-based additive manufacturing technology, also known as fused filament fabrication (FFF), considerable amounts of expensive material will continue to be wasted until a defect-free 3D-printed component can be finalized. In order to lead this advanced manufacturing technique toward cleaner production and to save costs, this study addresses the ability to remanufacture a wide range of commercially available filaments. Most of them either tend to degrade by chain scission or crosslinking. Only polypropylene (PP)-based filaments appear to be particularly thermally stable and therefore suitable for multiple remanufacturing sequences. As the extrusion step exerts the largest influence on the material in terms of temperature and shear load, this study focused on the morphological, rheological, thermal, processing, tensile, and impact properties of a promising PP composite in the course of multiple consecutive extrusions as well as the impact of additional heat stabilizers. Even after 15 consecutive filament extrusions, the stabilized additively manufactured PP composite revealed an unaltered morphology and therefore the same tensile and impact strength as the initial material. As the viscosity of the material of the 15th extrusion was nearly identical to that of the 1st extrusion sequence, the processability both in terms of extrusion and FFF was outstanding, despite the tremendous amount of shear and thermal stress that was undergone. The present work provides key insights into one possible step toward more sustainable production through FFF.

16.
Int J Biomater ; 2019: 2393481, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31186649

RESUMO

Whilst the significance of substrate topography as a regulator of cell function is well established, a systematic analysis of the principles underlying this is still unavailable. Here we evaluate the hypothesis that surface energy plays a decisive role in substrate-mediated modulation of cell phenotype by evaluation of cell behaviour on synthetic microstructures exhibiting pronounced differences in surface energy. These microstructures, specifically cubes and walls, were fabricated from a biocompatible base polymer, poly(methyl methacrylate), by variotherm injection molding. The dimensions of the cubes were 1 µm x 1 µm x 1 µm (height x width x length) with a periodicity of 1:1 and 1:5 and the dimensions of the walls 1 µm x 1 µm x 15 mm (height x width x length) with a periodicity of 1:1 and 1:5. Mold inserts were made by lithography and electroplating. The surface energy of the resultant microstructures was determined by static contact angle measurements. Light scanning microscopy of the morphology of NT2/D1 and MC3T3-E1 preosteoblast cells cultured on structured PMMA samples in both cases revealed a profound surface energy dependence. "Walls" appeared to promote significant cell elongation, whilst a lack of cell adhesion was observed on "cubes" with the lowest periodicity. Contact angle measurements on walls revealed enhanced surface energy anisotropy (55 mN/m max., 10 mN/m min.) causing a lengthwise spreading of the test liquid droplet, similar to cell elongation. Surface energy measurements for cubes revealed increased isotropic hydrophobicity (87° max., H2O). A critical water contact angle of ≤ 80° appears to be necessary for adequate cell adhesion. A "switch" for cell adhesion and subsequently cell growth could therefore be applied by, for example, adjusting the periodicity of hydrophobic structures. In summary cell elongation on walls and a critical surface energy level for cell adhesion could be produced for NT2/D1 and MC3T3-E1 cells by symmetrical and asymmetrical energy barrier levels. We, furthermore, propose a water-drop model providing a common physicochemical cause regarding similar cell/droplet geometries and cell adhesion on the investigated microstructures.

17.
Materials (Basel) ; 11(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783705

RESUMO

Additive manufacturing (AM) is the fabrication of real three-dimensional objects from metals, ceramics, or plastics by adding material, usually as layers. There are several variants of AM; among them material extrusion (ME) is one of the most versatile and widely used. In MEAM, molten or viscous materials are pushed through an orifice and are selectively deposited as strands to form stacked layers and subsequently a three-dimensional object. The commonly used materials for MEAM are thermoplastic polymers and particulate composites; however, recently innovative formulations of highly-filled polymers (HP) with metals or ceramics have also been made available. MEAM with HP is an indirect process, which uses sacrificial polymeric binders to shape metallic and ceramic components. After removing the binder, the powder particles are fused together in a conventional sintering step. In this review the different types of MEAM techniques and relevant industrial approaches for the fabrication of metallic and ceramic components are described. The composition of certain HP binder systems and powders are presented; the methods of compounding and filament making HP are explained; the stages of shaping, debinding, and sintering are discussed; and finally a comparison of the parts produced via MEAM-HP with those produced via other manufacturing techniques is presented.

18.
Polymers (Basel) ; 10(5)2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-30966524

RESUMO

Polypropylene (PP) parts produced by means of extrusion-based additive manufacturing, also known as fused filament fabrication, are prone to detaching from the build platform due to their strong tendency to shrink and warp. Apart from incorporating high volume fractions of fillers, one approach to mitigate this issue is to improve the adhesion between the first deposited layer and the build platform. However, a major challenge for PP is the lack of adhesion on standard platform materials, as well as a high risk of welding on PP-based platform materials. This study reports the material selection of build platform alternatives based on contact angle measurements. The adhesion forces, investigated by shear-off measurements, between PP-based filaments and the most promising platform material, an ultra-high-molecular-weight polyethylene (UHMW-PE), were optimised by a thorough parametric study. Higher adhesion forces were measured by increasing the platform and extrusion temperatures, increasing the flow rate and decreasing the thickness of the first layer. Apart from changes in printer settings, an increased surface roughness of the UHMW-PE platform led to a sufficient, weld-free adhesion for large-area parts of PP-based filaments, due to improved wetting, mechanical interlockings, and an increased surface area between the two materials in contact.

19.
Polymers (Basel) ; 10(1)2017 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-30966072

RESUMO

It is of great importance for polymer processing whether and how viscosity influences the wettability of tool surfaces. We demonstrate the existence of a distinct relationship between the contact angle of molten polymers and zero shear viscosity in this paper. The contact angle of molten polypropylene and polymethylmethacrylate on polished steel was studied in a high temperature chamber using the sessile drop method. A high pressure capillary rheometer with a slit die was employed to determine the shear viscosity curves in a low shear rate range. A linear relation between the contact angle and zero shear viscosity was obtained. Furthermore, the contact angle and the zero shear viscosity values of the different polymers were combined to one function. It is revealed that, for the wetting of tool surfaces by molten polymers, a lower viscosity is advantageous. Furthermore, a model based on the temperature shift concept is proposed which allows the calculation of the contact angle of molten polymers on steel for different temperatures directly from shear viscosity data.

20.
Polymers (Basel) ; 9(1)2017 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970697

RESUMO

Polymeric materials display distinguished characteristics which stem from the interplay of phenomena at various length and time scales. Further development of polymer systems critically relies on a comprehensive understanding of the fundamentals of their hierarchical structure and behaviors. As such, the inherent multiscale nature of polymer systems is only reflected by a multiscale analysis which accounts for all important mechanisms. Since multiscale modelling is a rapidly growing multidisciplinary field, the emerging possibilities and challenges can be of a truly diverse nature. The present review attempts to provide a rather comprehensive overview of the recent developments in the field of multiscale modelling and simulation of polymeric materials. In order to understand the characteristics of the building blocks of multiscale methods, first a brief review of some significant computational methods at individual length and time scales is provided. These methods cover quantum mechanical scale, atomistic domain (Monte Carlo and molecular dynamics), mesoscopic scale (Brownian dynamics, dissipative particle dynamics, and lattice Boltzmann method), and finally macroscopic realm (finite element and volume methods). Afterwards, different prescriptions to envelope these methods in a multiscale strategy are discussed in details. Sequential, concurrent, and adaptive resolution schemes are presented along with the latest updates and ongoing challenges in research. In sequential methods, various systematic coarse-graining and backmapping approaches are addressed. For the concurrent strategy, we aimed to introduce the fundamentals and significant methods including the handshaking concept, energy-based, and force-based coupling approaches. Although such methods are very popular in metals and carbon nanomaterials, their use in polymeric materials is still limited. We have illustrated their applications in polymer science by several examples hoping for raising attention towards the existing possibilities. The relatively new adaptive resolution schemes are then covered including their advantages and shortcomings. Finally, some novel ideas in order to extend the reaches of atomistic techniques are reviewed. We conclude the review by outlining the existing challenges and possibilities for future research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...