Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(4): 104010, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35345454

RESUMO

Tackling climate change is one of the undoubtedly most important challenges at the present time. This review deals mainly with the chemical aspects of the current status for converting the greenhouse gas CO2 via electrochemical CO2 reduction reaction (CO2RR) to multicarbon alcohols as valuable products. Feasible reaction routes are presented, as well as catalyst synthesis methods such as electrodeposition, precipitation, or sputtering. In addition, a comprehensive overview of the currently achievable selectivities for multicarbon alcohols in CO2RR is given. It is also outlined to what extent, for example, modifications of the catalyst surfaces or the use of bifunctional compounds the product distribution is shifted. In addition, the influence of varying electrolyte, temperature, and pressure is described and discussed.

2.
iScience ; 25(4): 104011, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35340428

RESUMO

For the efficient electrochemical conversion of CO2 into valuable chemical feedstocks, a well-coordinated interaction of all electrolyzer compartments is required. In addition to the catalyst, whose role is described in detail in the part "Electrochemical CO2 Reduction toward Multicarbon Alcohols - The Microscopic World of Catalysts & Process Conditions" of this divided review, the general cell setups, design and manufacture of the electrodes, membranes used, and process parameters must be optimally matched. The authors' goal is to provide a comprehensive review of the current literature on how these aspects affect the overall performance of CO2 electrolysis. To be economically competitive as an overall process, the framework conditions, i.e., CO2 supply and reaction product treatment must also be considered. If the key indicators for current density, selectivity, cell voltage, and lifetime of a CO2 electrolyzer mentioned in the techno-economic consideration of this review are met, electrochemical CO2 reduction can make a valuable contribution to the creation of closed carbon cycles and to a sustainable energy economy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...