Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 35(1): 225-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24138830

RESUMO

The significant drawbacks and lack of success associated with current methods to treat critically sized nerve defects have led to increased interest in neural tissue engineering. Conducting polymers show great promise due to their electrical properties, and in the case of polypyrrole (PPY), its cell compatibility as well. Thus, the goal of this study is to synthesize a conducting composite nerve conduit with PPY and poly(d, l-lactic acid) (PDLLA), assess its ability to support the differentiation of rat pheochromocytoma 12 (PC12) cells in vitro, and determine its ability to promote nerve regeneration in vivo. Different amounts of PPY (5%, 10%, and 15%) are used to synthesize the conduits resulting in different conductivities (5.65, 10.40, and 15.56 ms/cm, respectively). When PC12 cells are seeded on these conduits and stimulated with 100 mV for 2 h, there is a marked increase in both the percentage of neurite-bearing cells and the median neurite length as the content of PPY increased. More importantly, when the PPY/PDLLA nerve conduit was used to repair a rat sciatic nerve defect it performed similarly to the gold standard autologous graft. These promising results illustrate the potential that this PPY/PDLLA conducting composite conduit has for neural tissue engineering.


Assuntos
Ácido Láctico , Regeneração Nervosa , Polímeros , Pirróis , Animais , Microscopia Eletrônica de Varredura , Tamanho do Órgão , Células PC12 , Poliésteres , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Espectroscopia de Infravermelho com Transformada de Fourier , Caminhada
2.
Tissue Eng Part A ; 18(21-22): 2231-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22690837

RESUMO

Low back pain is a leading health problem in the United States, which is most often resulted from nucleus pulposus (NP) degeneration. To date, the replacement of degenerated NP relies entirely on mechanical devices. However, a biological NP replacement implant is more desirable. Here, we report the regeneration of NP tissue using a biodegradable nanofibrous (NF) scaffold. Rabbit NP cells were seeded on the NF scaffolds to regenerate NP-like tissue both in vitro and in a subcutaneous implantation model. The NP cells on the NF scaffolds proliferated faster than those on control solid-walled (SW) scaffolds in vitro. Significantly more extracellular matrix (ECM) production (glycosaminoglycan and type II collagen) was found on the NF scaffolds than on the control SW scaffolds. The constructs were then implanted in the caudal spine of athymic rats for up to 12 weeks. The tissue-engineered NP could survive, produce functional ECM, remain in place, and maintain the disc height, which is similar to the native NP tissue.


Assuntos
Materiais Biocompatíveis/farmacologia , Disco Intervertebral/citologia , Disco Intervertebral/fisiologia , Nanofibras/química , Polímeros/química , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Animais , Biodegradação Ambiental , DNA/metabolismo , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/cirurgia , Ácido Láctico/química , Masculino , Camundongos , Camundongos Nus , Nanofibras/ultraestrutura , Poliésteres , Implantação de Prótese , Coelhos , Radiografia , Ratos , Ratos Nus , Coloração e Rotulagem , Tela Subcutânea/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
3.
Macromol Biosci ; 12(6): 761-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22508530

RESUMO

A tissue-engineering scaffold resembling the structure of the natural extracellular matrix can often facilitate tissue regeneration. Nerve and tendon are oriented micro-scale tissue bundles. In this study, a method combining injection molding and thermally induced phase separation techniques is developed to create single- and multiple-channeled nanofibrous poly(L-lactic acid) scaffolds. The overall shape, the number and spatial arrangement of channels, the channel wall matrix architecture, the porosity and mechanical properties of the scaffolds are all tunable. The porous NF channel wall matrix provides an excellent microenvironment for protein adsorption and the attachment of PC12 neuronal cells and tendon fibroblast cells, showing potential for neural and tendon tissue regeneration.


Assuntos
Fibroblastos/citologia , Ácido Láctico/química , Nanofibras/química , Neurônios/citologia , Polímeros/química , Engenharia Tecidual/métodos , Animais , Fibroblastos/metabolismo , Nanofibras/ultraestrutura , Regeneração Nervosa , Neurônios/metabolismo , Células PC12 , Poliésteres , Porosidade , Coelhos , Ratos , Tendões/citologia , Tendões/metabolismo
4.
Macromol Biosci ; 12(7): 911-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22396193

RESUMO

Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple bioactive agents. Presenting bioactive agents on scaffolding surfaces is the most efficient way to elicit desired cell/material interactions. This paper reviews recent advancements in the development of functionalized biodegradable polymer scaffolds for tissue engineering, emphasizing the syntheses of functional biodegradable polymers, and surface modification of polymeric scaffolds.


Assuntos
Materiais Biomiméticos/síntese química , Ácidos Carboxílicos/química , Quitosana/química , Gelatina/química , Ácido Láctico/química , Fosfatos/química , Ácido Poliglicólico/química , Apatitas/química , Biomarcadores/análise , Materiais Biomiméticos/farmacologia , Células Cultivadas , Matriz Extracelular , Expressão Gênica/efeitos dos fármacos , Humanos , Microscopia Eletrônica de Varredura , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Propriedades de Superfície , Engenharia Tecidual
5.
Biomaterials ; 32(36): 9622-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21944829

RESUMO

Bone tissue engineering is a highly interdisciplinary field that seeks to tackle the most challenging bone-related clinical issues. The major components of bone tissue engineering are the scaffold, cells, and growth factors. This review will focus on the scaffold and recent advancements in developing scaffolds that can mimic the natural extracellular matrix of bone. Specifically, these novel scaffolds mirror the nanofibrous collagen network that comprises the majority of the non-mineral portion of bone matrix. Using two main fabrication techniques, electrospinning and thermally-induced phase separation, and incorporating bone-like minerals, such as hydroxyapatite, composite nanofibrous scaffolds can improve cell adhesion, stem cell differentiation, and tissue formation. This review will cover the two main processing techniques and how they are being applied to fabricate scaffolds for bone tissue engineering. It will then cover how these scaffolds can enhance the osteogenic capabilities of a variety of cell types and survey the ability of the constructs to support the growth of clinically relevant bone tissue.


Assuntos
Materiais Biomiméticos/química , Osso e Ossos/fisiologia , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Humanos , Osteogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA