Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202401198, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695843

RESUMO

Producing sp3-hybridized carbon-enriched molecules is of particular interest due to their high success rate in clinical trials. The installation of aliphatic chains onto aromatic scaffolds was accomplished by nickel-catalyzed C(sp2)-C(sp3) cross-electrophile coupling with arylsulfonium salts. Thus, simple non-prefunctionalized arenes could be alkylated through the formation of aryldibenzothiophenium salts. The reaction employs an electrochemical approach to avoid potentially hazardous chemical redox agents, and importantly, the one-pot alkylation proved also viable, highlighting the robustness of our approach.

2.
Chem Sci ; 15(3): 1117-1122, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239685

RESUMO

Multicomponent domino reactions via electrochemical annulations have emerged as a robust strategy for the rapid assembly of heterocyclics. Herein, an electrochemical annulation via a [1 + 2 + 1 + 1] four-component domino reaction was accomplished in a user-friendly undivided cell setup to assemble valuable five-membered isoxazole motifs. Our approach is characterized by a high level functional group tolerance and operational simplicity, avoiding the tedious and time-consuming preparation of pre-functionalized substrates. Detailed mechanistic studies were conducted including isotopic labeling, kinetic studies, cyclic voltammetry (CV) analysis, and intermediate characterization, providing support for a radical pathway.

3.
Precis Chem ; 1(6): 382-387, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37654809

RESUMO

While electrocatalyzed alkyne annulations of arenes represent a powerful strategy for the assembly of heteroaromatic motives, electrochemical C(sp2)-H activations of alkenes remain scarce. Herein, a strategy for the rhodaelectro-catalyzed functionalization of enamides is presented for the efficient construction of pyrroles using electricity as a sustainable oxidant. Moreover, the tuning of the solvent system allowed a fascinating switch in chemoselectivity, which is not possible with traditionally used chemical oxidants, giving rise to lactone architectures. The rhoda-electrocatalysis features a broad scope as well as high regio- and chemoselectivities.

4.
Chem Soc Rev ; 52(18): 6359-6378, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37655711

RESUMO

Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...