Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 10: 842816, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252150

RESUMO

Feet play an important role in the adaptive, versatile, and stable locomotion of legged creatures. Accordingly, several robotic research studies have used biological feet as the inspiration for the design of robot feet in traversing complex terrains. However, so far, no robot feet can allow legged robots to adaptively, versatilely, and robustly crawl on various curved metal pipes, including flat surfaces for pipe inspection. To address this issue, we propose here a novel hybrid rigid-soft robot-foot design inspired by the leg morphology of an inchworm. The foot consists of a rigid section with an electromagnet and a soft toe covering for enhanced adhesion to a metal pipe. Finite element analysis , performed under different loading conditions, reveals that due to its compliance, the soft toe can undergo recoverable deformation with adaptability to various curved metal pipes and plain metal surfaces. We have successfully implemented electromagnetic feet with soft toes (EROFT) on an inchworm-inspired pipe crawling robot for adaptive, versatile, and stable locomotion. Foot-to-surface adaptability is provided by the inherent elasticity of the soft toe, making the robot a versatile and stable metal pipe crawler. Experiments show that the robot crawling success rate reaches 100% on large diameter metal pipes. The proposed hybrid rigid-soft feet (i.e., electromagnetic feet with soft toes) can solve the problem of continuous surface adaptation for the robot in a stable and efficient manner, irrespective of the surface curvature, without the need to manually change the robot feet for specific surfaces. To this end, the foot development enables the robot to meet a set of deployment requirements on large oil and gas pipelines for potential use in inspecting various faults and leakages.

2.
IEEE Trans Neural Netw Learn Syst ; 33(5): 1833-1845, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34669583

RESUMO

Walking animals can continuously adapt their locomotion to deal with unpredictable changing environments. They can also take proactive steps to avoid colliding with an obstacle. In this study, we aim to realize such features for autonomous walking robots so that they can efficiently traverse complex terrains. To achieve this, we propose novel bioinspired adaptive neuroendocrine control. In contrast to conventional locomotion control methods, this approach does not require robot and environmental models, exteroceptive feedback, or multiple learning trials. It integrates three main modular neural mechanisms, relying only on proprioceptive feedback and short-term memory, namely: 1) neural central pattern generator (CPG)-based control; 2) an artificial hormone network (AHN); and 3) unsupervised input correlation-based learning (ICO). The neural CPG-based control creates insect-like gaits, while the AHN can continuously adapt robot joint movement individually with respect to the terrain during the stance phase using only the torque feedback. In parallel, the ICO generates short-term memory for proactive obstacle negotiation during the swing phase, allowing the posterior legs to step over the obstacle before hitting it. The control approach is evaluated on a bioinspired hexapod robot walking on complex unpredictable terrains (e.g., gravel, grass, and extreme random stepfield). The results show that the robot can successfully perform energy-efficient autonomous locomotion and online continuous adaptation with proactivity to overcome such terrains. Since our adaptive neural control approach does not require a robot model, it is general and can be applied to other bioinspired walking robots to achieve a similar adaptive, autonomous, and versatile function.


Assuntos
Robótica , Adaptação Fisiológica , Animais , Locomoção , Redes Neurais de Computação , Robótica/métodos , Caminhada
3.
Front Neural Circuits ; 15: 743101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35027885

RESUMO

Understanding the real-time dynamical mechanisms of neural systems remains a significant issue, preventing the development of efficient neural technology and user trust. This is because the mechanisms, involving various neural spatial-temporal ingredients [i.e., neural structure (NS), neural dynamics (ND), neural plasticity (NP), and neural memory (NM)], are too complex to interpret and analyze altogether. While advanced tools have been developed using explainable artificial intelligence (XAI), node-link diagram, topography map, and other visualization techniques, they still fail to monitor and visualize all of these neural ingredients online. Accordingly, we propose here for the first time "NeuroVis," real-time neural spatial-temporal information measurement and visualization, as a method/tool to measure temporal neural activities and their propagation throughout the network. By using this neural information along with the connection strength and plasticity, NeuroVis can visualize the NS, ND, NM, and NP via i) spatial 2D position and connection, ii) temporal color gradient, iii) connection thickness, and iv) temporal luminous intensity and change of connection thickness, respectively. This study presents three use cases of NeuroVis to evaluate its performance: i) function approximation using a modular neural network with recurrent and feedforward topologies together with supervised learning, ii) robot locomotion control and learning using the same modular network with reinforcement learning, and iii) robot locomotion control and adaptation using another larger-scale adaptive modular neural network. The use cases demonstrate how NeuroVis tracks and analyzes all neural ingredients of various (embodied) neural systems in real-time under the robot operating system (ROS) framework. To this end, it will offer the opportunity to better understand embodied dynamic neural information processes, boost efficient neural technology development, and enhance user trust.


Assuntos
Inteligência Artificial , Robótica , Locomoção , Redes Neurais de Computação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...