Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Res ; 1838: 148989, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38723740

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (DLPFC) is an established treatment for medication-resistant depression. Several targeting methods for the left DLPFC have been proposed including identification with resting-state functional magnetic resonance imaging (rs-fMRI) neuronavigation, stimulus coordinates based on structural MRI, or electroencephalography (EEG) F3 site by Beam F3 method. To date, neuroanatomical and neurofunctional differences among those approaches have not been investigated on healthy subjects, which are structurally and functionally unaffected by psychiatric disorders. This study aimed to compare the mean location, its dispersion, and its functional connectivity with the subgenual cingulate cortex (SGC), which is known to be associated with the therapeutic outcome in depression, of various approaches to target the DLPFC in healthy subjects. Fifty-seven healthy subjects underwent MRI scans to identify the stimulation site based on their resting-state functional connectivity and were measured their head size for targeting with Beam F3 method. In addition, we included two fixed stimulus coordinates over the DLPFC in the analysis, as recommended in previous studies. From the results, the rs-fMRI method had, as expected, more dispersed target sites across subjects and the greatest anticorrelation with the SGC, reflecting the known fact that personalized neuronavigation yields the greatest antidepressant effect. In contrast, the targets located by the other methods were relatively close together with less dispersion, and did not differ in anticorrelation with the SGC, implying their limitation of the therapeutic efficacy and possible interchangeability of them.

2.
Transl Psychiatry ; 14(1): 164, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531856

RESUMO

Quantitative susceptibility mapping is a magnetic resonance imaging technique that measures brain tissues' magnetic susceptibility, including iron deposition and myelination. This study examines the relationship between subcortical volume and magnetic susceptibility and determines specific differences in these measures among patients with major depressive disorder (MDD), patients with schizophrenia, and healthy controls (HCs). This was a cross-sectional study. Sex- and age- matched patients with MDD (n = 49), patients with schizophrenia (n = 24), and HCs (n = 50) were included. Magnetic resonance imaging was conducted using quantitative susceptibility mapping and T1-weighted imaging to measure subcortical susceptibility and volume. The acquired brain measurements were compared among groups using analyses of variance and post hoc comparisons. Finally, a general linear model examined the susceptibility-volume relationship. Significant group-level differences were found in the magnetic susceptibility of the nucleus accumbens and amygdala (p = 0.045). Post-hoc analyses indicated that the magnetic susceptibility of the nucleus accumbens and amygdala for the MDD group was significantly higher than that for the HC group (p = 0.0054, p = 0.0065, respectively). However, no significant differences in subcortical volume were found between the groups. The general linear model indicated a significant interaction between group and volume for the nucleus accumbens in MDD group but not schizophrenia or HC groups. This study showed susceptibility alterations in the nucleus accumbens and amygdala in MDD patients. A significant relationship was observed between subcortical susceptibility and volume in the MDD group's nucleus accumbens, which indicated abnormalities in myelination and the dopaminergic system related to iron deposition.


Assuntos
Transtorno Depressivo Maior , Esquizofrenia , Humanos , Transtorno Depressivo Maior/patologia , Esquizofrenia/patologia , Estudos Transversais , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Ferro
3.
Artigo em Inglês | MEDLINE | ID: mdl-38354899

RESUMO

TMS combined with EEG (TMS-EEG) is a tool to characterize the neurophysiological dynamics of the cortex. Among the TMS paradigms, short-latency afferent inhibition (SAI) allows the investigation of inhibitory effects mediated by the cholinergic system. The aim of this study was to compare cholinergic function in the DLPFC between individuals with mild cognitive impairment (MCI) and healthy controls (HC) using TMS-EEG with the SAI paradigm. In this study, 30 MCI and 30 HC subjects were included. The SAI paradigm consisted of 80 single pulse TMS and 80 SAI stimulations applied to the left DLPFC. N100 components, global mean field power (GMFP) and total power were calculated. As a result, individuals with MCI showed reduced inhibitory effects on N100 components and GMFP at approximately 100 ms post-stimulation and on ß-band activity at 200 ms post-stimulation compared to HC. Individuals with MCI showed reduced SAI, suggesting impaired cholinergic function in the DLPFC compared to the HC group. We conclude that these findings underscore the clinical applicability of the TMS-EEG method as a powerful tool for assessing cholinergic function in individuals with MCI.


Assuntos
Disfunção Cognitiva , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Inibição Neural/fisiologia , Eletroencefalografia , Colinérgicos
4.
Artigo em Inglês | MEDLINE | ID: mdl-38369098

RESUMO

Self-disturbance is considered a core feature underlying the psychopathology of schizophrenia. Interoception has an important role in the development of a sense of self, leading to increased interest in the potential contribution of abnormal interoception to self-disturbances in schizophrenia. Several neuropsychological studies have demonstrated aberrant interoception in schizophrenia. However, cortical interoceptive processing has not yet been thoroughly investigated. Thus, we sought to examine resting-state heartbeat-evoked potential (HEP) in this population. We hypothesized that patients with schizophrenia would exhibit significant alterations in HEP compared to healthy controls (HCs). In this cross-sectional electroencephalogram (EEG) study, we compared the HEPs between age- and sex-matched groups of patients with schizophrenia and HCs. A 10-min resting-state EEG with eyes closed and an electrocardiogram (ECG) were recorded and analyzed for the time window of 450 ms to 500 ms after an ECG R peak. A positive HEP shift was observed in the frontal-central regions (F [1, 82] = 7.402, p = 0.008, partial η2 = 0.009) in patients with schizophrenia (n = 61) when compared with HCs (n = 31) after adjusting for confounders such as age, sex, and heart rate. A cluster-based correction analysis revealed that the HEP around the right frontal area (Fp2, F4, and F8) showed the most significant group differences (F [1, 82] = 10.079, p = 0.002, partial η2 = 0.021), with a peak at the F4 electrode site (F [1, 82] = 12.646, p < 0.001, partial η2 = 0.069). We observed no correlation between HEP and symptoms in patients with schizophrenia. A positive shift of HEP during the late component could reflect a trait abnormality in schizophrenia. Further research is required to determine the association between the altered cortical interoceptive processing indexed with HEP and self-disturbances in schizophrenia.


Assuntos
Esquizofrenia , Humanos , Frequência Cardíaca/fisiologia , Estudos Transversais , Potenciais Evocados/fisiologia , Eletroencefalografia
5.
Brain Sci ; 14(2)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38391706

RESUMO

Explored through EEG/MEG, auditory stimuli function as a suitable research probe to reveal various neural activities, including event-related potentials, brain oscillations and functional connectivity. Accumulating evidence in this field stems from studies investigating neuroplasticity induced by long-term auditory training, specifically cross-sectional studies comparing musicians and non-musicians as well as longitudinal studies with musicians. In contrast, studies that address the neural effects of short-term interventions whose duration lasts from minutes to hours are only beginning to be featured. Over the past decade, an increasing body of evidence has shown that short-term auditory interventions evoke rapid changes in neural activities, and oscillatory fluctuations can be observed even in the prestimulus period. In this scoping review, we divided the extracted neurophysiological studies into three groups to discuss neural activities with short-term auditory interventions: the pre-stimulus period, during stimulation, and a comparison of before and after stimulation. We show that oscillatory activities vary depending on the context of the stimuli and are greatly affected by the interplay of bottom-up and top-down modulational mechanisms, including attention. We conclude that the observed rapid changes in neural activitiesin the auditory cortex and the higher-order cognitive part of the brain are causally attributed to short-term auditory interventions.

6.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38204301

RESUMO

Major depressive disorder affects over 300 million people globally, with approximately 30% experiencing treatment-resistant depression (TRD). Given that impaired neuroplasticity underlies depression, the present study focused on neuroplasticity in the dorsolateral prefrontal cortex (DLPFC). Here, we aimed to investigate the differences in neuroplasticity between 60 individuals with TRD and 30 age- and sex-matched healthy controls (HCs). To induce neuroplasticity, participants underwent a paired associative stimulation (PAS) paradigm involving peripheral median nerve stimulation and transcranial magnetic stimulation (TMS) targeting the left DLPFC. Neuroplasticity was assessed by using measurements combining TMS with EEG before and after PAS. Both groups exhibited significant increases in the early component of TMS-evoked potentials (TEP) after PAS (P < 0.05, paired t-tests with the bootstrapping method). However, the HC group demonstrated a greater increase in TEPs than the TRD group (P = 0.045, paired t-tests). Additionally, event-related spectral perturbation analysis highlighted that the gamma power significantly increased after PAS in the HC group, whereas it was decreased in the TRD group (P < 0.05, paired t-tests with the bootstrapping method). This gamma power modulation revealed a significant group difference (P = 0.006, paired t-tests), indicating an inverse relationship for gamma power modulation. Our findings underscore the impaired neuroplasticity of the DLPFC in individuals with TRD.


Assuntos
Transtorno Depressivo Maior , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Córtex Pré-Frontal Dorsolateral , Eletroencefalografia/métodos , Depressão , Córtex Pré-Frontal/fisiologia , Plasticidade Neuronal/fisiologia
7.
Schizophr Bull ; 50(2): 393-402, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38007605

RESUMO

BACKGROUND AND HYPOTHESIS: Given the heterogeneity and possible disease progression in schizophrenia, identifying the neurobiological subtypes and progression patterns in each patient may lead to novel biomarkers. Here, we adopted data-driven machine-learning techniques to identify the progression patterns of brain morphological changes in schizophrenia and investigate the association with treatment resistance. STUDY DESIGN: In this cross-sectional multicenter study, we included 177 patients with schizophrenia, characterized by treatment response or resistance, with 3D T1-weighted magnetic resonance imaging. Cortical thickness and subcortical volumes calculated by FreeSurfer were converted into z scores using 73 healthy controls data. The Subtype and Stage Inference (SuStaIn) algorithm was used for unsupervised machine-learning analysis. STUDY RESULTS: SuStaIn identified 3 different subtypes: (1) subcortical volume reduction (SC) type (73 patients), in which volume reduction of subcortical structures occurs first and moderate cortical thinning follows, (2) globus pallidus hypertrophy and cortical thinning (GP-CX) type (42 patients), in which globus pallidus hypertrophy initially occurs followed by progressive cortical thinning, and (3) cortical thinning (pure CX) type (39 patients), in which thinning of the insular and lateral temporal lobe cortices primarily happens. The remaining 23 patients were assigned to baseline stage of progression (no change). SuStaIn also found 84 stages of progression, and treatment-resistant schizophrenia showed significantly more progressed stages than treatment-responsive cases (P = .001). The GP-CX type presented earlier stages than the pure CX type (P = .009). CONCLUSIONS: The brain morphological progressions in schizophrenia can be classified into 3 subtypes, and treatment resistance was associated with more progressed stages, which may suggest a novel biomarker.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/complicações , Estudos Transversais , Afinamento Cortical Cerebral/patologia , Imageamento por Ressonância Magnética , Lobo Temporal/patologia , Progressão da Doença , Hipertrofia/complicações , Hipertrofia/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia
8.
Schizophr Bull ; 50(2): 382-392, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-37978044

RESUMO

BACKGROUND AND HYPOTHESIS: Schizophrenia is associated with widespread cortical thinning and abnormality in the structural covariance network, which may reflect connectome alterations due to treatment effect or disease progression. Notably, patients with treatment-resistant schizophrenia (TRS) have stronger and more widespread cortical thinning, but it remains unclear whether structural covariance is associated with treatment response in schizophrenia. STUDY DESIGN: We organized a multicenter magnetic resonance imaging study to assess structural covariance in a large population of TRS and non-TRS, who had been resistant and responsive to non-clozapine antipsychotics, respectively. Whole-brain structural covariance for cortical thickness was assessed in 102 patients with TRS, 77 patients with non-TRS, and 79 healthy controls (HC). Network-based statistics were used to examine the difference in structural covariance networks among the 3 groups. Moreover, the relationship between altered individual differentiated structural covariance and clinico-demographics was also explored. STUDY RESULTS: Patients with non-TRS exhibited greater structural covariance compared with HC, mainly in the fronto-temporal and fronto-occipital regions, while there were no significant differences in structural covariance between TRS and non-TRS or HC. Higher individual differentiated structural covariance was associated with lower general scores of the Positive and Negative Syndrome Scale in the non-TRS group, but not in the TRS group. CONCLUSIONS: These findings suggest that reconfiguration of brain networks via coordinated cortical thinning is related to treatment response in schizophrenia. Further longitudinal studies are warranted to confirm if greater structural covariance could serve as a marker for treatment response in this disease.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Afinamento Cortical Cerebral , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos
9.
Front Neurosci ; 17: 1196805, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600001

RESUMO

Introduction: Glutamatergic neurometabolites play important roles in the basal ganglia, a hub of the brain networks involved in musical rhythm processing. We aimed to investigate the relationship between rhythm processing abilities and glutamatergic neurometabolites in the caudate. Methods: We aquired Glutamatergic function in healthy individuals employing proton magnetic resonance spectroscopy. We targeted the right caudate and the dorsal anterior cingulate cortex (dACC) as a control region. Rhythm processing ability was assessed by the Harvard Beat Assessment Test (H-BAT). Results: We found negative correlations between the production part of the Beat Saliency Test in the H-BAT and glutamate and glutamine levels in the caudate (r = -0.693, p = 0.002) whereas there was no such association in the dACC. Conclusion: These results suggest that higher glutamatergic neurometabolite levels in the caudate may contribute to rhythm processing, especially the ability to produce meter in music precisely.

10.
Artigo em Inglês | MEDLINE | ID: mdl-36754485

RESUMO

BACKGROUND: The glutamatergic system is thought to play an important role in the pathophysiology of bipolar disorder (BD). While there has been an increase in proton magnetic resonance spectroscopy studies examining this neurotransmission system, the results are inconsistent. Possible reasons for the inconsistency, including clinical features such as mood state and childhood versus adulthood age, were not addressed in previous meta-analyses. METHODS: This systematic review and meta-analysis of proton magnetic resonance spectroscopy studies of BD included 40 studies, with 1135 patients with BD and 964 healthy control (HC) subjects. RESULTS: Glutamate plus glutamine and glutamine levels in the anterior cingulate cortex of patients with BD were significantly elevated compared with those of HC subjects (standardized mean difference = 0.42, 0.48, respectively). Subgroup analyses showed that adult BD patients had significantly higher levels of glutamate plus glutamine than adult HC subjects, but this was not the case in pediatric patients. For mood states, anterior cingulate cortex glutamate plus glutamine levels were higher in patients with bipolar depression than those in HC subjects. CONCLUSIONS: Our results imply that glutamatergic dysfunction in the anterior cingulate cortex may be implicated in the pathophysiology of BD, which is most evident in adult BD patients and patients with bipolar depression.


Assuntos
Transtorno Bipolar , Adulto , Humanos , Criança , Glutamina , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ácido Glutâmico , Giro do Cíngulo
11.
Schizophr Res ; 252: 69-76, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634450

RESUMO

Accumulating evidence indicates that pathophysiology of schizophrenia involves abnormalities in the dopamine and glutamatergic neuronal systems. Antipsychotic medications are currently used to normalize dopaminergic function for schizophrenia. However, approximately 30 % of the patients have no response to antipsychotic medications, which is classified as treatment-resistant schizophrenia (TRS). Furthermore, dopamine and glutamate levels in the neural basis have been reported to differ between TRS and non-TRS. In this study, we assumed that these differences may affect music rhythm perception and production abilities between the two groups. We examined fifty-seven schizophrenia (26 TRS, 31 non-TRS) and thirty-one healthy controls (HCs) by using the Harvard Beat Assessment Test (H-BAT). As a result, we found that rhythm production was worse in patients with TRS compared to patients with non-TRS and HCs, while no difference was observed between patients with non-TRS and HCs. In addition, rhythm perception and production abilities were impaired in the whole patient group compared with HCs. Furthermore, in the patient group, the deficits were correlated with cognitive impairments. Collectively, these results suggest that patients with schizophrenia may have rhythm processing deficits, with particular a rhythm production problem in the TRS group.


Assuntos
Antipsicóticos , Música , Esquizofrenia , Humanos , Antipsicóticos/uso terapêutico , Dopamina , Percepção
12.
Schizophr Res ; 252: 129-137, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36641960

RESUMO

BACKGROUND: Thirty percent of patients with schizophrenia do not respond to non-clozapine antipsychotics and are termed treatment-resistant schizophrenia (TRS). The 40-Hz auditory steady-state response (ASSR) is a well-known to be reduced in patients with schizophrenia compared to healthy controls (HCs), suggesting impaired gamma oscillation in schizophrenia. Given no ASSR study on TRS, we aimed to examine the neurophysiological basis of TRS employing 40-Hz ASSR paradigm. METHOD: We compared ASSR measures among HCs, patients with non-TRS, and patients with TRS. TRS criteria were defined by a score of 4 or higher on two items of the Positive and Negative Syndrome Scale (PANSS) positive symptoms despite standard antipsychotic treatment. Participants were examined for ASSR with 40-Hz click-train stimulus, and then time-frequency analysis was performed to calculate evoked power and phase-locking factor (PLF) of 40-Hz ASSR. RESULTS: A total of 79 participants were included: 27 patients with TRS (PANSS = 92.6 ± 15.8); 27 patients with non-TRS (PANSS = 63.3 ± 14.7); and 25 HCs. Evoked power in 40-Hz ASSR was lower in the TRS group than in the HC group (F2,79 = 8.37, p = 0.015; TRS vs. HCs: p = 0.012, d = 1.1) while no differences in PLF were found between the groups. CONCLUSION: These results suggest that glutamatergic and GABAergic neurophysiological dysfunctions are involved in the pathophysiology of TRS. Our findings warrant more comprehensive and longitudinal studies for deep phenotyping of TRS.


Assuntos
Córtex Auditivo , Esquizofrenia , Humanos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Esquizofrenia Resistente ao Tratamento , Eletroencefalografia/métodos
13.
Biosensors (Basel) ; 12(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36290951

RESUMO

Identifying genuine cortical stimulation-elicited electroencephalography (EEG) is crucial for improving the validity and reliability of neurophysiology using transcranial magnetic stimulation (TMS) combined with EEG. In this study, we evaluated the spatiotemporal profiles of single-pulse TMS-elicited EEG response administered to the left dorsal prefrontal cortex (DLPFC) in 28 healthy participants, employing active and sham stimulation conditions. We hypothesized that the early component of TEP would be activated in active stimulation compared with sham stimulation. We specifically analyzed the (1) stimulus response, (2) frequency modulation, and (3) phase synchronization of TMS-EEG data at the sensor level and the source level. Compared with the sham condition, the active condition induced a significant increase in TMS-elicited EEG power in the 30-60 ms time interval in the stimulation area at the sensor level. Furthermore, in the source-based analysis, the active condition induced significant increases in TMS-elicited response in the 30-60 ms compared with the sham condition. Collectively, we found that the active condition could specifically activate the early component of TEP compared with the sham condition. Thus, the TMS-EEG method that was applied to the DLPFC could detect the genuine neurophysiological cortical responses by properly handling potential confounding factors such as indirect response noises.


Assuntos
Potenciais Evocados , Estimulação Magnética Transcraniana , Humanos , Estimulação Magnética Transcraniana/métodos , Reprodutibilidade dos Testes , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Córtex Pré-Frontal
14.
Psychiatry Clin Neurosci ; 76(11): 587-594, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36111425

RESUMO

BACKGROUND: Gamma-Aminobutyric Acid (GABA) is the primary inhibitory neurotransmitter in the central nervous system. GABAergic dysfunction has been implicated in the pathophysiology of schizophrenia. Clozapine, the only approved drug for treatment-resistant schizophrenia (TRS), involves the GABAergic system as one of its targets. However, no studies have investigated the relationship between brain GABA levels, as measured by proton magnetic resonance spectroscopy (1 H-MRS), and clozapine response in patients with TRS. METHODS: This study enrolled patients with TRS who did not respond to clozapine (ultra-resistant schizophrenia: URS) and who responded to clozapine (non-URS), patients with schizophrenia who responded to first-line antipsychotics (first-line responders: FLR), and healthy controls (HCs). We measured GABA levels in the midcingulate cortex (MCC) using 3T 1 H-MRS and compared these levels among the groups. The associations between GABA levels and symptom severity were also explored within the patient groups. RESULTS: A total of 98 participants (URS: n = 22; non-URS: n = 25; FLR: n = 16; HCs: n = 35) completed the study. We found overall group differences in MCC GABA levels (F(3,86) = 3.25, P = 0.04). Specifically, patients with URS showed higher GABA levels compared to those with non-URS (F(1,52) = 8.40, P = 0.03, Cohen's d = 0.84). MCC GABA levels showed no associations with any of the symptom severity scores within each group or the entire patient group. CONCLUSION: Our study is the first to report elevated GABA levels in the MCC in patients with schizophrenia resistant to clozapine treatment compared with those responsive to clozapine. Longitudinal studies are required to evaluate if GABA levels are a suitable biomarker to predict clozapine resistance.


Assuntos
Clozapina , Esquizofrenia , Humanos , Clozapina/farmacologia , Clozapina/uso terapêutico , Espectroscopia de Prótons por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico , Esquizofrenia Resistente ao Tratamento , Ácido gama-Aminobutírico
15.
J Psychiatry Neurosci ; 47(5): E325-E335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36104082

RESUMO

BACKGROUND: The efficacy of repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (dlPFC) has been established in patients with treatment-resistant depression (TRD), suggesting that alterations in signal propagation from the left dlPFC to other brain regions may be linked to the pathophysiology of TRD. Alterations at the cellular level, including dysfunction of oligodendrocytes, may contribute to these network abnormalities. The objectives of the present study were to compare signal propagation from the left dlPFC to other neural networks in patients with TRD and healthy controls. We used TMS combined with electroencephalography to explore links between cell-specific gene expression and signal propagation in TRD using a virtual-histology approach. METHODS: We examined source-level estimated signal propagation from the left dlPFC to the 7 neural networks in 60 patients with TRD and 30 healthy controls. We also calculated correlations between the interregional profiles of altered signal propagation and gene expression for 9 neural cell types derived from the Allen Human Brain Atlas data set. RESULTS: Signal propagation from the left dlPFC to the salience network was reduced in the θ and α bands in patients with TRD (p = 0.0055). Furthermore, this decreased signal propagation was correlated with cellspecific gene expression of oligodendrocytes (p < 0.000001). LIMITATIONS: These results show only part of the pathophysiology of TRD, because stimulation was limited to the left dlPFC. CONCLUSION: Reduced signal propagation from the left dlPFC to the salience network may represent a pathophysiological endophenotype of TRD; this finding may be associated with reduced expression of oligodendrocytes.


Assuntos
Transtorno Depressivo Resistente a Tratamento , Estimulação Magnética Transcraniana , Depressão , Transtorno Depressivo Resistente a Tratamento/diagnóstico por imagem , Transtorno Depressivo Resistente a Tratamento/metabolismo , Transtorno Depressivo Resistente a Tratamento/terapia , Humanos , Oligodendroglia/metabolismo , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Estimulação Magnética Transcraniana/métodos
16.
J Psychiatry Neurosci ; 47(1): E1-E10, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35027443

RESUMO

BACKGROUND: Abnormalities in the anterior cingulate cortex (ACC) are thought to play an important role in the pathophysiology of schizophrenia. Given regional variations in ACC structure, the present study aimed to examine ACC structural subdivisions and their relationships to treatment resistance and glutamatergic levels in schizophrenia. METHODS: This study included 100 patients with schizophrenia and 52 healthy controls from 2 cohorts. We applied non-negative matrix factorization to identify accurate and stable spatial components of ACC structure. Between groups, we compared ACC structural indices in each spatial component based on treatment resistance or response and tested relationships with ACC glutamate + glutamine levels. RESULTS: We detected reductions in cortical thickness and increases in mean diffusivity in the spatial components on the surface of the cingulate sulcus, especially in patients with treatment-resistant and clozapine-resistant schizophrenia. Notably, mean diffusivity in these components was higher in patients who did not respond to clozapine compared to those who did. Furthermore, these ACC structural alterations were related to elevated ACC glutamate + glutamine levels but not related to symptomatology or antipsychotic dose. LIMITATIONS: Sample sizes, cross-sectional findings and mixed antipsychotic status were limitations of this study. CONCLUSION: This study identified reproducible abnormalities in ACC structures in patients with treatment-resistant and clozapine-resistant schizophrenia. Given that these spatial components play a role in inhibitory control, the present study strengthens the notion that glutamate-related disinhibition is a common biological feature of treatment resistance in schizophrenia.


Assuntos
Antipsicóticos , Clozapina , Esquizofrenia , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Clozapina/farmacologia , Clozapina/uso terapêutico , Estudos Transversais , Ácido Glutâmico , Glutamina , Giro do Cíngulo/diagnóstico por imagem , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico
17.
Neurosci Biobehav Rev ; 132: 1205-1213, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718049

RESUMO

Although schizophrenia is associated with increased presynaptic dopamine function in the striatum, it remains unclear if neuromelanin levels, which are thought to serve as a biomarker for midbrain dopamine neuron function, are increased in patients with schizophrenia. We conducted a systematic review and meta-analysis of magnetic resonance imaging (MRI) and postmortem studies comparing neuromelanin (NM) levels between patients with schizophrenia and healthy controls (HCs). Standard mean differences were calculated to assess group differences in NM accumulation levels between patients with schizophrenia and HCs. This study included 7 articles in total. Five studies employed NM-sensitive MRI (NM-MRI) and two were postmortem brain studies. The patient group (n = 163) showed higher NM levels in the substantia nigra (SN) than HCs (n = 228) in both the analysis of the seven studies and the subgroup analysis of the 5 NM-MRI studies. This analysis suggest increased NM levels in the SN may be a potential biomarker for stratifying schizophrenia, warranting further research that accounts for the heterogeneity of this disorder.


Assuntos
Esquizofrenia , Humanos , Imageamento por Ressonância Magnética/métodos , Melaninas , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Substância Negra/diagnóstico por imagem , Substância Negra/patologia
18.
Mol Psychiatry ; 27(1): 744-757, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34584230

RESUMO

BACKGROUND: The glutamate (Glu) and gamma aminobutyric acid (GABA) hypotheses of schizophrenia were proposed in the 1980s. However, current findings on those metabolite levels in schizophrenia have been inconsistent, and the relationship between their abnormalities and the pathophysiology of schizophrenia remains unclear. To summarize the nature of the alterations of glutamatergic and GABAergic systems in schizophrenia, we conducted meta-analyses of proton magnetic resonance spectroscopy (1H-MRS) studies examining these metabolite levels. METHODS: A systematic literature search was conducted using Embase, Medline, PsycINFO, and PubMed. Original studies that compared four metabolite levels (Glu, glutamine [Gln], Glx [Glu+Gln], and GABA), as measured by 1H-MRS, between individuals at high risk for psychosis, patients with first-episode psychosis, or patients with schizophrenia and healthy controls (HC) were included. A random-effects model was used to calculate the effect sizes for group differences in these metabolite levels of 18 regions of interest between the whole group or schizophrenia group and HC. Subgroup analysis and meta-regression were performed based on the status of antipsychotic treatment, illness stage, treatment resistance, and magnetic field strength. RESULTS: One-hundred-thirty-four studies met the eligibility criteria, totaling 7993 participants with SZ-spectrum disorders and 8744 HC. 14 out of 18 ROIs had enough numbers of studies to examine the group difference in the metabolite levels. In the whole group, Glx levels in the basal ganglia (g = 0.32; 95% CIs: 0.18-0.45) were elevated. Subgroup analyses showed elevated Glx levels in the hippocampus (g = 0.47; 95% CIs: 0.21-0.73) and dorsolateral prefrontal cortex (g = 0.25; 95% CIs: 0.05-0.44) in unmedicated patients than HC. GABA levels in the MCC were decreased in the first-episode psychosis group compared with HC (g = -0.40; 95% CIs: -0.62 to -0.17). Treatment-resistant schizophrenia (TRS) group had elevated Glx and Glu levels in the MCC (Glx: g = 0.7; 95% CIs: 0.38-1.01; Glu: g = 0.63; 95% CIs: 0.31-0.94) while MCC Glu levels were decreased in the patient group except TRS (g = -0.17; 95% CIs: -0.33 to -0.01). CONCLUSIONS: Increased glutamatergic metabolite levels and reduced GABA levels indicate that the disruption of excitatory/inhibitory balance may be related to the pathophysiology of schizophrenia-spectrum disorders.


Assuntos
Esquizofrenia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Espectroscopia de Prótons por Ressonância Magnética/métodos , Esquizofrenia/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Biochem Pharmacol ; 195: 114842, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798123

RESUMO

Orally administered ketoconazole may rarely induce liver injury and adrenal insufficiency. A metabolite formed by arylacetamide deacetylase (AADAC)-mediated hydrolysis has been observed in cellulo studies, and it is relevant to ketoconazole-induced cytotoxicity. This study tried to examine the significance of AADAC in ketoconazole-induced toxicity in vivo using Aadac knockout mice. Oral administration of 150 mg/kg ketoconazole resulted in the area under the plasma concentration-time curve values of ketoconazole and N-deacetylketoconazole, a hydrolyzed metabolite of ketoconazole, in Aadac knockout mice being significantly higher and lower than those in wild-type mice, respectively. With the administration of ketoconazole (300 mg/kg/day) for 7 days, Aadac knockout mice showed higher mortality (100%) than wild-type mice (42.9%), and they also showed significantly higher plasma alanine transaminase and lower corticosterone levels, thus representing liver injury and steroidogenesis inhibition, respectively. It was suggested that a higher plasma ketoconazole concentration likely accounts for the inhibition of the synthesis of corticosterone, which has anti-inflammatory effects, in the adrenal gland in Aadac KO mice. In Aadac knockout mice, hepatic mRNA levels of immune- and inflammation-related factors were increased by the administration of 300 mg/kg ketoconazole, and the increase was restored by the replenishment of corticosterone (40 mg/kg, s.c.) along with recoveries of plasma alanine transaminase levels. In conclusion, Aadac defects exacerbate ketoconazole-induced liver injury by inhibiting glucocorticoid synthesis and enhancing the inflammatory response. This in vivo study revealed that the hydrolysis of ketoconazole by AADAC can mitigate ketoconazole-induced toxicities.


Assuntos
Insuficiência Adrenal/genética , Hidrolases de Éster Carboxílico/genética , Doença Hepática Induzida por Substâncias e Drogas/genética , Cetoconazol/toxicidade , Insuficiência Adrenal/enzimologia , Insuficiência Adrenal/etiologia , Animais , Área Sob a Curva , Hidrolases de Éster Carboxílico/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Inibidores do Citocromo P-450 CYP3A/metabolismo , Inibidores do Citocromo P-450 CYP3A/toxicidade , Regulação Enzimológica da Expressão Gênica , Hidrólise , Cetoconazol/metabolismo , Cetoconazol/farmacocinética , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Neuroimage Clin ; 32: 102852, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34638035

RESUMO

BACKGROUND: One-third of patients with schizophrenia are treatment-resistant to non-clozapine antipsychotics (TRS), while the rest respond (NTRS). Examining whether TRS and NTRS represent different pathophysiologies is an important step toward precision medicine. METHODS: Focusing on cortical thickness (CT), we analyzed international multi-site cross-sectional datasets of magnetic resonance imaging comprising 110 patients with schizophrenia (NTRS = 46, TRS = 64) and 52 healthy controls (HCs). We utilized a logistic regression with L1-norm regularization to find brain regions related to either NTRS or TRS. We conducted nested 10-fold cross-validation and computed the accuracy and area under the curve (AUC). Then, we applied the NTRS classifier to patients with TRS, and vice versa. RESULTS: Patients with NTRS and TRS were classified from HCs with 65% and 78% accuracies and with the AUC of 0.69 and 0.85 (p = 0.014 and < 0.001, corrected), respectively. The left planum temporale (PT) and left anterior insula/inferior frontal gyrus (IFG) contributed to both NTRS and TRS classifiers. The left supramarginal gyrus only contributed to NTRS and right superior temporal sulcus and right lateral orbitofrontal cortex only to the TRS. The NTRS classifiers successfully distinguished those with TRS from HCs with the AUC of 0.78 (p < 0.001), while the TRS classifiers classified those with NTRS from HCs with the AUC of 0.69 (p = 0.015). CONCLUSION: Both NTRS and TRS could be distinguished from HCs on the basis of CT. The CT pathological basis of NTRS and TRS has commonalities, and TRS presents unique CT features.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/uso terapêutico , Encéfalo/diagnóstico por imagem , Estudos Transversais , Humanos , Imageamento por Ressonância Magnética , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...