Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2108, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453923

RESUMO

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has evoked a worldwide pandemic. As the emergence of variants has hampered the neutralization capacity of currently available vaccines, developing effective antiviral therapeutics against SARS-CoV-2 and its variants becomes a significant challenge. The main protease (Mpro) of SARS-CoV-2 has received increased attention as an attractive pharmaceutical target because of its pivotal role in viral replication and proliferation. Here, we generated a de novo Mpro-inhibitor screening platform to evaluate the efficacies of Mpro inhibitors based on Mpro cleavage site-embedded amyloid peptide (MCAP)-coated gold nanoparticles (MCAP-AuNPs). We fabricated MCAPs comprising an amyloid-forming sequence and Mpro-cleavage sequence, mimicking in vivo viral replication process mediated by Mpro. By measuring the proteolytic activity of Mpro and the inhibitory efficacies of various drugs, we confirmed that the MCAP-AuNP-based platform was suitable for rapid screening potential of Mpro inhibitors. These results demonstrated that our MCAP-AuNP-based platform has great potential for discovering Mpro inhibitors and may accelerate the development of therapeutics against COVID-19.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , SARS-CoV-2 , Ouro/farmacologia , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais , Peptídeos , Peptídeo Hidrolases , Antivirais/farmacologia , Simulação de Acoplamento Molecular
3.
Clin Proteomics ; 20(1): 45, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875819

RESUMO

Glioblastoma is one of the most malignant primary brain cancer. Despite surgical resection with modern technology followed by chemo-radiation therapy with temozolomide, resistance to the treatment and recurrence is common due to its aggressive and infiltrating nature of the tumor with high proliferation index. The median survival time of the patients with glioblastomas is less than 15 months. Till now there has been no report of molecular target specific for glioblastomas. Early diagnosis and development of molecular target specific for glioblastomas are essential for longer survival of the patients with glioblastomas. Development of biomarkers specific for glioblastomas is most important for early diagnosis, estimation of the prognosis, and molecular target therapy of glioblastomas. To that end, in this study, we have conducted a comprehensive proteome study using primary cells and tissues from patients with glioblastoma. In the discovery stage, we have identified 7429 glioblastoma-specific proteins, where 476 proteins were quantitated using Tandem Mass Tag (TMT) method; 228 and 248 proteins showed up and down-regulated pattern, respectively. In the validation stage (20 selected target proteins), we developed quantitative targeted method (MRM: Multiple reaction monitoring) using stable isotope standards (SIS) peptide. In this study, five proteins (CCT3, PCMT1, TKT, TOMM34, UBA1) showed the significantly different protein levels (t-test: p value ≤ 0.05, AUC ≥ 0.7) between control and cancer groups and the result of multiplex assay using logistic regression showed the 5-marker panel showed better sensitivity (0.80 and 0.90), specificity (0.92 and 1.00), error rate (10 and 2%), and AUC value (0.94 and 0.98) than the best single marker (TOMM34) in primary cells and tissues, respectively. Although we acknowledge that the model requires further validation in a large sample size, the 5 protein marker panel can be used as baseline data for the discovery of novel biomarkers of the glioblastoma.

4.
Mitochondrial DNA B Resour ; 8(7): 783-786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521905

RESUMO

The complete chloroplast genome sequence of Crepidomanes latealatum (Bosch) Copel. was determined in the present study. The genome is 145,943 base pairs (bp) in length and comprised two inverted repeats (32,990 bp) between a large single copy (92,170 bp) and a small single copy (20,783 bp). It contains 88 coding genes, 8 rRNA genes, 34 tRNA genes, and 1 pseudogene of trnL-UAA, and the GC content is 37.6%. Molecular phylogenetic analysis based on the plastid genome sequences of related taxa strongly supported the monophyly of the family Hymenophyllaceae, and the genus Vandenboschia was a sister group of Crepidomanes. In addition, compared to C. minutum, two large deletions of 453 bp and 878 bp were found in the IGS regions of petA-psbI and rrn16-trnV-GAC of C. latealatum cp genome, respectively.

5.
Nat Commun ; 14(1): 1520, 2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36934093

RESUMO

Highly sensitive rapid testing for COVID-19 is essential for minimizing virus transmission, especially before the onset of symptoms and in asymptomatic cases. Here, we report bioengineered enrichment tools for lateral flow assays (LFAs) with enhanced sensitivity and specificity (BEETLES2), achieving enrichment of SARS-CoV-2 viruses, nucleocapsid (N) proteins and immunoglobulin G (IgG) with 3-minute operation. The limit of detection is improved up to 20-fold. We apply this method to clinical samples, including 83% with either intermediate (35%) or low viral loads (48%), collected from 62 individuals (n = 42 for positive and n = 20 for healthy controls). We observe diagnostic sensitivity, specificity, and accuracy of 88.1%, 100%, and 91.9%, respectively, compared with commercial LFAs alone achieving 14.29%, 100%, and 41.94%, respectively. BEETLES2, with permselectivity and tunability, can enrich the SARS-CoV-2 virus, N proteins, and IgG in the nasopharyngeal/oropharyngeal swab, saliva, and blood serum, enabling reliable and sensitive point-of-care testing, facilitating fast early diagnosis.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Teste para COVID-19 , Sensibilidade e Especificidade , Reação em Cadeia da Polimerase , Imunoglobulina G
6.
ACS Appl Mater Interfaces ; 15(2): 2538-2551, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36548054

RESUMO

The assembly of α-synuclein (αS) oligomers is recognized as the main pathological driver of synucleinopathies. While the elimination of toxic αS oligomers shows promise for the treatment of Parkinson's disease (PD), the discovery of αS oligomer degradation drugs has been hindered by the lack of proper drug screening tools. Here, we report a drug screening platform for monitoring the efficacy of αS-oligomer-degrading drugs using amyloid-shelled gold nanocomplexes (ASGNs). We fabricate ASGNs in the presence of dopamine, mimicking the in vivo generation process of pathological αS oligomers. To test our platform, the first of its kind for PD drugs, we use αS-degrading proteases and various small molecular substances that have shown efficacy in PD treatment. We demonstrate that the ASGN-based in vitro platform has strong potential to discover effective αS-oligomer-targeting drugs, and thus it may reduce the attrition problem in drug discovery for PD treatment.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogênicas
8.
J Med Chem ; 65(7): 5751-5759, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35319890

RESUMO

Immunoglobulin Gs (IgGs) contain many Lys and Cys residues, which results in an unwanted complex product mixture with conventional drug conjugation methods. We selectively acylated the ε-NH2 of K248 on trastuzumab using an IgG Fc-binding peptide (FcBP) equipped with a 5-norbornene-2-carboxylic acid thioester (AbClick-1). AbClick-1 locates its thioester close to the ε-NH2 of K248 while binding to trastuzumab. Consequently, the thioester underwent proximity-driven selective acylation of ε-NH2 through an S to N acyl transfer reaction. Furthermore, N-tert-butyl maleimide accelerated the cross-linking reaction with an approximately 95% yield of the desired product by scavenging the byproduct (FcBP-SH). Only K248 was modified selectively with the 5-norbornene-2-carbonyl group, which was further modified by click reaction to afford an antibody-drug conjugate (ADC) with two drugs per antibody. The resulting ADCs showed remarkable in vitro and in vivo anticancer activity. Our results demonstrate that a thioester is a promising chemical entity for proximity-driven site-selective conjugation of antibodies.


Assuntos
Imunoconjugados , Imunoconjugados/química , Peptídeos , Trastuzumab/química
9.
Anal Chem ; 92(7): 4926-4934, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196314

RESUMO

Protein expression levels are regulated through both translation and degradation mechanisms. Levels of degradation intermediates, that is, partially degraded proteins, cannot be distinguished from those of intact proteins by global proteomics analysis, which quantify total protein abundance levels. This study aimed to develop a tool for assessing the aspects of degradation regulation via proteolytic processing through a new multiplexed N-terminomics method involving selective isobaric labeling of protein N-termini and immunoaffinity capture of the labeled N-terminal peptides. Our method allows for not only identification of proteolytic cleavage sites, but also highly multiplexed quantification of proteolytic processing. We profiled a number of potential cleavage sites by signal peptidase and provided experimental confirmation of predicted cleavage sites of signal peptide. Furthermore, the present method uniquely represents the landscape of proteomic proteolytic processing rate during early embryogenesis in Drosophila melanogaster, revealing the underlying mechanism of stringent decay regulation of zygotically expressed proteins during early stages of embryogenesis.


Assuntos
Proteínas de Drosophila/análise , Peptídeos/análise , Animais , Drosophila melanogaster/embriologia , Desenvolvimento Embrionário , Proteólise , Proteômica
10.
Environ Technol ; 37(19): 2483-93, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26936197

RESUMO

This research focused on the optimum design of a cascade aerator to enhance the efficiency of an oxidation pond in a passive treatment system for remediating ferruginous mine drainage. For this purpose, various aeration experiments with aerators of different drop heights (0-4 m) and formations (types A and B) were executed on mine drainage. Type A simply drops the mine drainage into the oxidation pond while type B sprays the mine drainage and retains it for 8 min in each step. The efficiency enhancement of the oxidation pond was strongly dependent on the increase in pH and DO of the mine drainage discharged into the pond. The water quality improved with the increase in drop height but especially showed better effect with type B. The reasons for this result were attributed to the increase of contact surface and retention time of the mine drainage. The cascade aerator, therefore, should be designed to be as high as possible with the assistance of spraying form and retention time of the mine drainage to maximize the efficiency of the oxidation pond. These effects could be evaluated by calculating required areas of the oxidation pond for 95% of Fe(2+) oxidation.


Assuntos
Resíduos Industriais , Mineração , Oxigênio/química , Purificação da Água/instrumentação , Biodegradação Ambiental , Oxigênio/análise , Poluentes Químicos da Água , Purificação da Água/métodos
11.
J Lipid Res ; 57(1): 36-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26538545

RESUMO

Alzheimer's disease (AD) is the most common form of dementia; however, at the present time there is no disease-modifying drug for AD. There is increasing evidence supporting the role of lipid changes in the process of normal cognitive aging and in the etiology of age-related neurodegenerative diseases. AD is characterized by the presence of intraneuronal protein clusters and extracellular aggregates of ß-amyloid (Aß). Disrupted Aß kinetics may activate intracellular signaling pathways, including tau hyperphosphorylation and proinflammatory pathways. We analyzed and visualized the lipid profiles of mouse brains using MALDI-TOF MS. Direct tissue analysis by MALDI-TOF imaging MS (IMS) can determine the relative abundance and spatial distribution of specific lipids in different tissues. We used 5XFAD mice that almost exclusively generate and rapidly accumulate massive cerebral levels of Aß-42 (1). Our data showed changes in lipid distribution in the mouse frontal cortex, hippocampus, and subiculum, where Aß plaques are first generated in AD. Our results suggest that MALDI-IMS is a powerful tool for analyzing the distribution of various phospholipids and that this application might provide novel insight into the prediction of disease.


Assuntos
Doença de Alzheimer/metabolismo , Fosfolipídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fosfolipídeos/análise , Fosfolipídeos/química , Presenilina-1/genética
12.
Mol Cell Proteomics ; 14(10): 2722-32, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26229149

RESUMO

Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Animais , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Citocinas/metabolismo , Glicólise , Masculino , Camundongos Endogâmicos C57BL , Microesferas , Fagocitose , Proteoma/metabolismo , Proteômica
13.
Mol Cells ; 38(7): 624-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26062552

RESUMO

Since the emergence of proteomics methods, many proteins specific for renal cell carcinoma (RCC) have been identified. Despite their usefulness for the specific diagnosis of RCC, such proteins do not provide spatial information on the diseased tissue. Therefore, the identification of cancer-specific proteins that include information on their specific location is needed. Recently, matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS) based imaging mass spectrometry (IMS) has emerged as a new tool for the analysis of spatial distribution as well as identification of either proteins or small molecules in tissues. In this report, surgical tissue sections of papillary RCC were analyzed using MALDI-IMS. Statistical analysis revealed several discriminative cancer-specific m/z-species between normal and diseased tissues. Among these m/z-species, two particular proteins, S100A11 and ferritin light chain, which are specific for papillary RCC cancer regions, were successfully identified using LC-MS/MS following protein extraction from independent RCC samples. The expressions of S100A11 and ferritin light chain were further validated by immunohistochemistry of human tissues and tissue microarrays (TMAs) of RCC. In conclusion, MALDI-IMS followed by LC-MS/MS analysis in human tissue identified that S100A11 and ferritin light chain are differentially expressed proteins in papillary RCC cancer regions.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma de Células Renais/química , Ferritinas/análise , Proteínas S100/análise , Adulto , Linhagem Celular Tumoral , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Environ Health Toxicol ; 29: e2014019, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25384384

RESUMO

OBJECTIVES: Lysosome is the cell-organelle which is commonly used as biomonitoring tool in environmental pollution. In this study, the lysosomal proteomic of the yeast Saccharomyces cerevisiae was analyzed for utilization in the detection of toxic substances in mine water samples. METHODS: This work informs the expression of lysosomal proteomic in yeast in response with toxic chemicals, such as sodium meta-arsenite and tetracycline, for screening specific biomarkers. After that, a recombinant yeast contained this biomarker were constructed for toxic detection in pure toxic chemicals and mine water samples. RESULTS: Each chemical had an optimal dose at which the fluorescent protein intensity reached the peak. In the case of water samples, the yeast showed the response with sample 1, 3, 4, and 5; whereas there is no response with sample 2, 6, and 7. CONCLUSIONS: The recombinant yeast showed a high ability of toxic detection in response with several chemicals such as heavy metals and pharmaceuticals. In the case of mine water samples, the response varied depending on the sample content.

15.
J Am Chem Soc ; 136(40): 14136-42, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25158001

RESUMO

We report here a mitochondria-targetable pH-sensitive probe that allows for a quantitative measurement of mitochondrial pH changes, as well as the real-time monitoring of pH-related physiological effects in live cells. This system consists of a piperazine-linked naphthalimide as a fluorescence off-on signaling unit, a cationic triphenylphosphonium group for mitochondrial targeting, and a reactive benzyl chloride subunit for mitochondrial fixation. It operates well in a mitochondrial environment within whole cells and displays a desirable off-on fluorescence response to mitochondrial acidification. Moreover, this probe allows for the monitoring of impaired mitochondria undergoing mitophagic elimination as the result of nutrient starvation. It thus allows for the monitoring of the organelle-specific dynamics associated with the conversion between physiological and pathological states.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Mitocôndrias/química , Compostos de Benzil/química , Transporte de Elétrons , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Naftalimidas/química , Compostos Organosselênicos/química , Piperazina , Piperazinas/química
16.
PLoS One ; 9(8): e103955, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25101682

RESUMO

In this study, we investigated whether hepatitis B virus (HBV) causes the alteration of lipid metabolism and composition during acute infection and liver regeneration in a mouse model. The liver controls lipid biogenesis and bile acid homeostasis. Infection of HBV causes various liver diseases and impairs liver regeneration. As there are very few reports available in the literature on lipid alterations by HBV infection or HBV-mediated liver injury, we have analyzed phospholipids that have important roles in liver regeneration by using matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS) in the livers of HBV model mice. As a result, we identified different phosphatidylcholines (PCs) showing significant changes in their composition as well as cationized ion adduct formation in HBV-infected mouse livers which are associated with virus-mediated regeneration defects. To find the factor of altered PCs, the expression kinetics of enzymes was also examined that regulate PC biosynthesis during liver regeneration. It is noteworthy that the expression of choline-phosphate cytidylyltransferase A (PCYT1A) was significantly delayed in wild type HBV-expressing livers. Moreover, the amount of hepatic total PC was also significantly decreased in wt HBV-expressing mice. These results suggest that infection of HBV alters the composition of PCs which may involve in HBV-mediated regeneration defects and liver disease.


Assuntos
Regeneração Hepática , Fígado/virologia , Fosfatidilcolinas/química , Animais , Hepatite B/complicações , Hepatite B/fisiopatologia , Vírus da Hepatite B , Fígado/fisiopatologia , Masculino , Camundongos Endogâmicos BALB C , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , Análise de Componente Principal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
J Korean Med Sci ; 29(7): 934-40, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25045225

RESUMO

Direct tissue imaging mass spectrometry (IMS) by matrix-assisted laser desorption ionization and time-of-flight (MALDI-TOF) mass spectrometry has become increasingly important in biology and medicine, because this technology can detect the relative abundance and spatial distribution of interesting proteins in tissues. Five thyroid cancer samples, along with normal tissue, were sliced and transferred onto conductive glass slides. After laser scanning by MALDI-TOF equipped with a smart beam laser, images were created for individual masses and proteins were classified at 200-µm spatial resolution. Based on the spatial distribution, region-specific proteins on a tumor lesion could be identified by protein extraction from tumor tissue and analysis using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using all the spectral data at each spot, various intensities of a specific peak were detected in the tumor and normal regions of the thyroid. Differences in the molecular weights of expressed proteins between tumor and normal regions were analyzed using unsupervised and supervised clustering. To verify the presence of discovered proteins through IMS, we identified ribosomal protein P2, which is specific for cancer. We have demonstrated the feasibility of IMS as a useful tool for the analysis of tissue sections, and identified the tumor-specific protein ribosomal protein P2.


Assuntos
Biomarcadores/análise , Carcinoma/diagnóstico , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Neoplasias da Glândula Tireoide/diagnóstico , Idoso , Sequência de Aminoácidos , Carcinoma/metabolismo , Carcinoma/patologia , Carcinoma Papilar , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Peso Molecular , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Proteoma/análise , Proteômica , Reprodutibilidade dos Testes , Proteínas Ribossômicas/análise , Proteínas Ribossômicas/metabolismo , Câncer Papilífero da Tireoide , Glândula Tireoide/metabolismo , Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
18.
Antioxid Redox Signal ; 18(7): 770-83, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22867050

RESUMO

AIMS: Abnormal accumulation of α-synuclein aggregates is one of the key pathological features of many neurodegenerative movement disorders and dementias. These pathological aggregates propagate into larger brain regions as the disease progresses, with the associated clinical symptoms becoming increasingly severe and complex. However, the factors that induce α-synuclein aggregation and spreading of the aggregates remain elusive. Herein, we have evaluated the effects of the major lipid peroxidation byproduct 4-hydroxy-2-nonenal (HNE) on α-synuclein oligomerization and cell-to-cell transmission of this protein. RESULTS: Incubation with HNE promoted the oligomerization of recombinant human α-synuclein via adduct formation at the lysine and histidine residues. HNE-induced α-synuclein oligomers evidence a little ß-sheet structure and are distinct from amyloid fibrils at both conformation and ultrastructure levels. Nevertheless, the HNE-induced oligomers are capable of seeding the amyloidogenesis of monomeric α-synuclein under in vitro conditions. When neuronal cells were treated with HNE, both the translocation of α-synuclein into vesicles and the release of this protein from cells were increased. Neuronal cells can internalize HNE-modified α-synuclein oligomers, and HNE treatment increased the cell-to-cell transfer of α-synuclein proteins. INNOVATION AND CONCLUSION: These results indicate that HNE induces the oligomerization of α-synuclein through covalent modification and promotes the cell-to-cell transfer of seeding-capable oligomers, thereby contributing to both the initiation and spread of α-synuclein aggregates.


Assuntos
Aldeídos/metabolismo , Amiloide/metabolismo , Peroxidação de Lipídeos , Neurônios/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Aldeídos/química , Amiloide/química , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/isolamento & purificação
19.
Analyst ; 137(24): 5757-62, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23087915

RESUMO

Since the development of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, this procedure has been specifically used for analyzing proteins or high molecular weight compounds because of the interference of matrix signals in the regions of the low mass range. Recently, scientists have been using a wide range of chemical compounds as matrices that ionize small molecules in a mass spectrometer and overcome the limitations of MALDI mass spectrometry. In this study, we developed a new combination matrix of 3-hydroxycoumarin (3-HC) and 6-aza-2-thiothymine (ATT), which is capable of ionizing small molecules, including drugs and single amino acids. In addition to ionization of small molecules, the combination matrix by itself gives less signals in the low mass region and can be used for performing imaging mass spectrometry (IMS) experiments on tissues, which confirms the vacuum stability of the matrix inside a MALDI chamber. The drug donepezil was mapped in the intact tissue slices of mice simultaneously with a spatial resolution of 150 µm during IMS. IMS analysis clearly showed that intact donepezil was concentrated in the cortical region of the brain at 60 min after oral administration. Our observations and results indicate that the new combination matrix can be used for analyzing small molecules in complex samples using MALDI mass spectrometry.


Assuntos
Indanos/metabolismo , Imagem Molecular/métodos , Piperidinas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/metabolismo , Donepezila , Indanos/química , Masculino , Camundongos , Piperidinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...