Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(46): 32070-32076, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37920760

RESUMO

Formaldehyde is a toxic compound present in both the environment and living systems, and its detection is important due to its association with various pathological process. In this study, we report a new electrochemiluminescence (ECL) probe based on a cyclometalated iridium complex (IrHAA) for the selective detection of formaldehyde. The homoallylamine moiety in IrHAA reacts with formaldehyde, undergoing a 2-aza-Cope-rearrangement reaction to form a formyl group. Significant changes in the electronic properties and molecular orbital energies of the iridium complex through the functional group transformation result in enhanced ECL and radiometric phosphorescence changes, enabling the quantitative and selective detection of formaldehyde. The energetic requirements for ECL sensing were investigated, highlighting the importance of the excited state energy for achieving efficient ECL. The sensing mechanism was elucidated using NMR spectroscopy and MALDI-TOF analysis.

2.
Analyst ; 148(22): 5619-5626, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37840468

RESUMO

Exposure to mercury(II) ions (Hg2+) can cause various diseases such as Minamata disease, acrodynia, Alzheimer's disease, and Hunter-Russell syndrome, and even organ damage. Therefore, real-time and accurate monitoring of Hg2+ in environmental samples is crucial. In this study, we report a photoluminescent (PL) and electrochemiluminescent (ECL) probe based on a cyclometalated Ir(III) complex for the selective detection of Hg2+. The introduction of a reaction site, o-aminomethylphenylboronic acid, on the ancillary ligands allowed a prompt transmetalation reaction to take place between Hg2+ and boronic acid. This reaction resulted in significant decreases of the PL and ECL signals due to the photo-induced electron transfer from the Ir(III) complex to the Hg2+ ions. The probe was applied to the selective detection of Hg2+, and the signal changes revealed a linear correlation with Hg2+ concentrations in the range of 0-10 µM (LOD = 0.72 µM for PL, 8.03 nM for ECL). The designed probe allowed the successful quantification of Hg2+ in tap water samples, which proves its potential for the selective detection of Hg2+ in environmental samples.

3.
Adv Sci (Weinh) ; 10(33): e2302922, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37863818

RESUMO

Hybridizing single-walled carbon nanotubes (SWCNTs) with π-conjugated organic small molecules (π-OSMs) offers a promising approach for producing high-performance thermoelectric (TE) materials through the facile optimization of the molecular geometry and energy levels of π-OSMs. Designing a twisted molecular structure for the π-OSM with the highest occupied molecular orbital energy level comparable to the valence band of SWCNTs enables effective energy filtering between the two materials. The SWCNTs/twisted π-OSM hybrid exhibits a high Seebeck coefficient of 110.4 ± 2.6 µV K-1 , leading to a significantly improved power factor of 2,136 µW m-1 K-2 , which is 2.6 times higher than that of SWCNTs. Moreover, a maximum figure of merit over 0.13 at room temperature is achieved via the efficient TE transport of the SWCNTs/twisted π-OSM hybrid. The study highlights the promising potential of optimizing molecular engineering of π-OSMs for hybridization with SWCNTs to create next-generation, efficient TE materials.

4.
Chem Commun (Camb) ; 59(87): 13058-13061, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37847254

RESUMO

Donor-acceptor (D-A) type molecules with a skeleton consisting of a dimethylaminonaphthalene donor and an oxazaborine acceptor were designed as efficient electrochemiluminescence (ECL) luminophores with tunable intramolecular charge transfer (ICT). The D-A ECL luminophores demonstrated that the ICT characteristics play a critical role in the electrochemistry and ECL of luminophores in the presence of tri-n-propylamine, which was rationalised experimentally and computationally. Furthemore, dual-peaked ECL-potential behaviours of the luminophores were rationalised using two competitive pathway ECL mechanisms, elucidated through the use of spooling ECL spectroscopy.

5.
ACS Appl Mater Interfaces ; 15(40): 46872-46880, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774009

RESUMO

The stability of n-type organic and hybrid thermoelectric materials is limited in terms of their practical application to p-n parallel thermoelectric devices. We demonstrate the ambient stability of an n-type single-walled carbon nanotube/organic small-molecule (SWNT/OSM) hybrid by deepening the lowest occupied molecular orbital energy level. This hybrid exhibited the best figure of merit (0.032) among n-type SWNT/OSM hybrid thermoelectrics and an enhanced power factor of 291.0 µW m-1 K-2. Furthermore, we observed that the n-type thermoelectric stability of a hybrid of SWNT and pip containing two N-ethylpiperidinyl groups on both sides of a naphthalenediimide core was retained at 87% over 7 months (220 days) under ambient conditions without encapsulation.

6.
Microbiol Spectr ; 11(4): e0060023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358448

RESUMO

Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a serious public health threat. We recently demonstrated that the presence of a novel prophage ϕSA169 was associated with vancomycin (VAN) treatment failure in experimental MRSA endocarditis. In this study, we assessed the role of a ϕSA169 gene, ϕ80α_gp05 (gp05), in VAN-persistent outcome using gp05 isogenic MRSA strain sets. Of note, Gp05 significantly influences the intersection of MRSA virulence factors, host immune responses, and antibiotic treatment efficacy, including the following: (i) activity of the significant energy-yielding metabolic pathway (e.g., tricarboxylic acid cycle); (ii) carotenoid pigment production; (iii) (p)ppGpp (guanosine tetra- and pentaphosphate) production, which activates the stringent response and subsequent downstream functional factors (e.g., phenol-soluble modulins and polymorphonuclear neutrophil bactericidal activity); and (iv) persistence to VAN treatment in an experimental infective endocarditis model. These data suggest that Gp05 is a significant virulence factor which contributes to the persistent outcomes in MRSA endovascular infection by multiple pathways. IMPORTANCE Persistent endovascular infections are often caused by MRSA strains that are susceptible to anti-MRSA antibiotics in vitro by CLSI breakpoints. Thus, the persistent outcome represents a unique variant of traditional antibiotic resistance mechanisms and a significant therapeutic challenge. Prophage, a critical mobile genetic element carried by most MRSA isolates, provides their bacterial host with metabolic advantages and resistance mechanisms. However, how prophage-encoded virulence factors interact with the host defense system and antibiotics, driving the persistent outcome, is not well known. In the current study, we demonstrated that a novel prophage gene, gp05, significantly impacts tricarboxylic acid cycle activity, stringent response, and pigmentation, as well as vancomycin treatment outcome in an experimental endocarditis model using isogenic gp05 overexpression and chromosomal deletion mutant MRSA strain sets. The findings significantly advance our understanding of the role of Gp05 in persistent MRSA endovascular infection and provide a potential target for development of novel drugs against these life-threatening infections.


Assuntos
Endocardite , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Vancomicina/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/genética , Fatores de Virulência/genética , Prófagos/genética , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/metabolismo , Endocardite/microbiologia , Testes de Sensibilidade Microbiana
7.
Sci Rep ; 13(1): 3235, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828850

RESUMO

Naturally abundant dyes are very attractive for the development of dye-sensitized solar cells (DSSCs). Hydroxycinnamic acid derivatives, such as caffeic acid (CA), ferulic acid (FA), and p-coumaric acid (PA), were considered for the selective harvesting of ultraviolet A (UVA) (315-400 nm) photons. Their spectroscopic and electrochemical properties were investigated both theoretically and experimentally. They were further successfully adopted as photosensitizers in UV-selective and visibly transparent DSSCs, which exhibited a power conversion efficiency of 0.22-0.38% under AM (air mass) 1.5G (global) illumination (100 mW/cm2) and 3.40-3.62% under UVA irradiation (365 nm, 115.22 mW/cm2), with a corresponding visible light transmittance (VLT) of 49.07-43.72% and a general color rendering index (Ra) of 93-90.


Assuntos
Corantes , Energia Solar , Corantes/química , Ácidos Cumáricos , Fontes de Energia Elétrica , Raios Ultravioleta
8.
Chem Asian J ; 18(6): e202201142, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36710260

RESUMO

A combustion-assisted polyol reduction (CPR) method has been developed to deposit electrocatalytically efficient and transparent Pt counter electrodes (CEs) for bifacial dye-sensitized solar cells (DSSCs). Compared with conventional thermal decomposition of Pt precursors, CPR allows for a decrease in reduction temperature to 150 °C. The low-temperature processing is attributed to adding an organic fuel, acetylacetone (Hacac), which provides extra heat to lower reduction energy. In addition, the stable Pt complexes can simultaneously be formed in ethylene glycol (EG) and Hacac system, which leads to Pt nanoparticle size regulation. A ratio of Hacac to EG is optimized to achieve excellent electrocatalytic activity and high visible light transmittance for CEs. The bifacial DSSCs fabricated with CPR-Pt CEs (EG : Hacac=1 : 16) reach efficiencies of 6.71±0.16% and 6.41±0.15% in front and back irradiations, respectively.

9.
ACS Appl Mater Interfaces ; 14(50): 55627-55635, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36510648

RESUMO

Although numerous thermoelectric materials based on single-walled carbon nanotubes (SWNTs) and organic semiconductors have been reported during the past decade, the correlation between energy levels of organic semiconductors and thermoelectric performances of their hybrids is still ambiguous. In this study, we demonstrate that simultaneous modulation of the bandgap and highest occupied molecular orbital levels in organic small molecules (OSMs) largely improves the Seebeck coefficient and thus maximizes the figure of merit (ZT) of SWNT/OSM hybrids. SWNT/CzS with an enlarged bandgap and reduced barrier energy exhibited a synergistic increment in the Seebeck coefficient (108.7 µV K-1) and power factor (337.2 µW m-1 K-2), with the best ZT of 0.058 at room temperature among dopant-free carbon nanotube-hybridized thermoelectrics. The efficient charge carrier transport and reduced thermal conductivity of SWNT/CzS provided enhanced thermoelectric performance. Our strategy based on energy level modulation could be broadly applied for performance enhancement of organic and hybrid thermoelectric materials.

10.
Chem Commun (Camb) ; 58(54): 7542-7545, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35703380

RESUMO

A pyrenyl-phenanthroimidazole (Py-PI) conjugate emitted strong blue electrochemiluminescence (ECL) emission via the reductive-oxidation co-reactant pathway, with an ECL efficiency 3.3 times higher than that of the 9,10-diphenylanthracene (DPA) reference compound.

11.
Anal Chem ; 94(12): 5091-5098, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35302353

RESUMO

Hydrogen sulfide (H2S) is a well-known toxic gas with the odor of rotten eggs. Several reaction-based electrochemiluminescence (ECL) chemosensors for H2S have been developed; however, no homogeneous ECL probe with high selectivity toward H2S in aqueous media has been reported. Herein, we report an iridium(III) complex-based ECL chemodosimetric probe employing two 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) groups known as a photo-induced electron transfer quencher and a reaction site for the selective detection of H2S; the detection mechanism involves H2S being clearly distinguished from biothiols based on the different cleavage rates of the two NBD groups and extremely weak ECL interferences caused by reaction by-products. The probe was rationally designed to improve selectivity toward H2S within the ECL analysis platform by enabling the removal of nonspecific background signals observed via fluorescence analysis. This analytical system exhibited remarkable selectivity toward H2S, a rapid reaction rate, and high sensitivity (LOD = 57 nM) compared to conventional fluorescence methods. Furthermore, the probe could successfully quantify H2S in tap water samples and commercial ammonium sulfide solutions, which demonstrates the effectiveness of this probe in field monitoring.


Assuntos
Corantes Fluorescentes , Sulfeto de Hidrogênio , Corantes Fluorescentes/análise , Sulfeto de Hidrogênio/análise , Sulfetos , Água
12.
Colloids Surf A Physicochem Eng Asp ; 640: 128418, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35125661

RESUMO

The significant public health concerns related to particulate matter (PM) air pollutants and the airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have led to considerable interest in high-performance air filtration membranes. Highly ferroelectric polyvinylidene fluoride (PVDF) nanofiber (NF) filter membranes are successfully fabricated via electrospinning for high-performance low-cost air filtration. Spectroscopic and ferro-/piezoelectric analyses of PVDF NF show that a thinner PVDF NF typically forms a ferroelectric ß phase with a confinement effect. A 70-nm PVDF NF membrane exhibits the highest fraction of ß phase (87%) and the largest polarization behavior from piezoresponse force microscopy. An ultrathin 70-nm PVDF NF membrane exhibits a high PM0.3 filtration efficiency of 97.40% with a low pressure drop of 51 Pa at an air flow of 5.3 cm/s owing to the synergetic combination of the slip effect and ferroelectric dipole interaction. Additionally, the 70-nm PVDF NF membrane shows excellent thermal and chemical stabilities with negligible filtration performance degradation (air filtration efficiency of 95.99% and 87.90% and pressure drop of 55 and 65 Pa, respectively) after 24 h of heating at 120 °C and 1 h immersion in isopropanol.

13.
PLoS One ; 16(7): e0253771, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34214076

RESUMO

This study presents a real-time algorithm for even distributing the torque burden on the parallel manipulator with an autonomous underwater vehicle (AUV) through the cooperation of the AUV and manipulator. For the redundant resolution of the underwater vehicle manipulator system (UVMS), we used the weighting matrix of the weighted pseudo inverse for kinematic and dynamic modeling. We made dynamic and kinematic modeling using the force distribution characteristics of parallel manipulators. Using the parallel manipulator's model, the weighting matrix was changed every second to share the manipulator torque with the AUV. The Taguchi method was used to reduce the calculation time for real-time calculation and to perform valve rotation operations with as little torque as possible even in an underwater environment where it is difficult to determine any cause of errors. To demonstrate the effectiveness of this algorithm, we experimented with valve rotation in water using the UVMS. Analysis of the experimental results revealed that the manipulator torque load was greatly reduced due to the AUV load distribution.


Assuntos
Sistemas Computacionais , Navios , Algoritmos , Desenho de Equipamento , Torque
14.
ACS Appl Mater Interfaces ; 13(10): 12286-12295, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661594

RESUMO

Discovery of a new chemical moiety is the foundation to build new functional materials. For charge-transfer-type thermally activated delayed fluorescence (TADF) emitters, donor, acceptor, and π-spacer are the three key structural components. We invented a "click-to-twist" strategy to prepare a triazole-based acceptor unit that allows for a systematic modulation of the electronic and steric properties to control the excited-state photophysics. Taking the modular approach, six different emitters were prepared by varying the donor strength and π-spacer sterics for mix-and-match. These materials display deep blue to sky blue emissions in solutions, as well as apparent TADF characteristics in doped films. Organic light emitting diodes fabricated with these new TADF materials exhibit high external quantum efficiencies of up to 20.7% and maximum luminance of 6823 cd m-2. Building upon an intuitive and operationally straightforward method to build sterically congested molecules, this work showcases a new strategy to diversify TADF emitters by a mechanism-based design and modular synthesis.

15.
ACS Appl Mater Interfaces ; 12(46): 51387-51396, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166113

RESUMO

Single-walled carbon nanotube (SWCNTs-P)-small organic molecule hybrid materials are promising candidates for achieving high thermoelectric (TE) performance. In this study, we synthesized rod-coil amphiphilic molecules, that is, tri(ethylene oxide) chain-attached bis(bithiophenyl)-terphenyl derivatives (1 and 2). Supramolecular functionalization of SWCNTs-P with 1 or 2 induced charge-transfer interactions between them. Improved TE properties of the supramolecular hybrids (SWCNTs-1 and SWCNTs-2) are attributed to increased charge-carrier concentration (electrical conductivity), interfacial phonon scattering (thermal conductivity), and energy difference between the transport and Fermi levels (ETr - EF; Seebeck coefficient). SWCNTs-2 exhibited a ZT of 0.42 × 10-2 at 300 K, which is 350% larger than that of SWCNTs-P. Furthermore, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ)-doped SWCNTs-2 showed the highest ZT value of 1.96 × 10-2 at 300 K among SWCNTs-P/small organic molecule hybrids known until now. These results demonstrated that the supramolecular functionalization of SWCNTs-P with small organic molecules could be useful for enhancement of TE performance and applications in wearable/flexible thermoelectrics.

16.
Chem Commun (Camb) ; 56(55): 7577-7580, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32510098

RESUMO

BODIPY-based ECL chemodosimeters were developed for the detection of hydrogen peroxide. The reactivity of boronate towards hydrogen peroxide was enhanced by adjacent fluorine atoms. In combination with glucose oxidase, a fluorine-substituted probe successfully quantified the glucose level in human serum, providing its potential as a versatile tool in point-of-care testing applications.


Assuntos
Glicemia/análise , Corantes Fluorescentes/química , Porfobilinogênio/análogos & derivados , Glicemia/química , Técnicas Eletroquímicas/métodos , Glucose Oxidase/química , Humanos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Limite de Detecção , Oxirredução , Porfobilinogênio/química , Espectrometria de Fluorescência
17.
Inorg Chem ; 59(16): 11554-11561, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568526

RESUMO

Lone pair cation-based novel coordination compounds Sn[(pdc)(H2O)] (Sn-I) and (H2bpy)[Bi(pdc)2(Hpdc)]·5H2O (Bi-I) (pdc = pyridine-2,6-dicarboxylate; bpy = 4,4'-bipyridine) were synthesized through mild hydrothermal reactions. While Sn-I crystallizing in the polar space group, Pca21, exhibits a helical chain structure consisting of SnO3N distorted seesaws, 2,6-pdc linkers, and water molecules, Bi-I crystallizing in the centrosymmetric (CS) space group, P1̅, reveals a pseudo-3D network composed of BiO5N3 polyhedra, 2,6-pdc ligands, H2bpy2+ cations, and isolated H2O molecules. The lone cations Sn2+ and Bi3+ in the title compounds are in a highly deformed polyhedral environment. The single-crystal-to-single-crystal transformation from Sn-I to the anhydrous Sn[(pdc)] (Sn-II) with the polar noncentrosymmetric structure was successfully achieved upon heating crystals of Sn-I. UV-vis diffuse reflectance spectra indicate that the introduction of Sn2+ or Bi3+ red-shifts the adsorption edges upon coordination. Powder second-harmonic generation (SHG) measurements indicate that Sn-I and Sn-II are type-I phase-matchable and exhibit SHG intensity of ca. 15 and 35 times that of α-SiO2, respectively. Solid state photoluminescence (PL) measurements indicate that Bi-I is an excellent green emitting phosphor with the quantum efficiency up to 26% and outstanding decay lifetime of 1.82 ms at room temperature.

18.
Nanomaterials (Basel) ; 10(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397475

RESUMO

Two donor-π-spacer-acceptor (D-π-A) organic dyes were designed as photochromic dyes with the same π-spacer and acceptor but different donors, based on their electron-donating strength. Various structural, electronic, and optical properties, chemical reactivity parameters, and certain crucial factors that affect short-circuit current density (Jsc) and open circuit voltage (Voc) were investigated computationally using density functional theory and time-dependent density functional theory. The trans-cis isomerization of these azobenzene-based dyes and its effect on their properties was studied in detail. Furthermore, the dye-(TiO2)9 anatase nanoparticle system was simulated to understand the electronic structure of the interface. Based on the results, we justified how the trans-cis isomerization and different donor groups influence the physical properties as well as the photovoltaic performance of the resultant dye-sensitized solar cells (DSSCs). These theoretical calculations can be used for the rapid screening of promising dyes and their optimization for photochromic DSSCs.

19.
J Infect Dis ; 222(7): 1188-1198, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333768

RESUMO

Persistent methicillin-resistant Staphylococcus aureus (MRSA) endovascular infections represent a significant clinical-therapeutic challenge. Of particular concern is antibiotic treatment failure in infections caused by MRSA that are "susceptible" to antibiotic in vitro. In the current study, we investigate specific purine biosynthetic pathways and stringent response mechanism(s) related to this life-threatening syndrome using genetic matched persistent and resolving MRSA clinical bacteremia isolates (PB and RB, respectively), and isogenic MRSA strain sets. We demonstrate that PB isolates (vs RB isolates) have significantly higher (p)ppGpp production, phenol-soluble-modulin expression, polymorphonuclear leukocyte lysis and survival, fibronectin/endothelial cell (EC) adherence, and EC damage. Importantly, an isogenic strain set, including JE2 parental, relP-mutant and relP-complemented strains, translated the above findings into significant outcome differences in an experimental endocarditis model. These observations indicate a significant regulation of purine biosynthesis on stringent response, and suggest the existence of a previously unknown adaptive genetic mechanism in persistent MRSA infection.


Assuntos
Endocardite/microbiologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Purinas/biossíntese , Infecções Estafilocócicas/metabolismo , Animais , Antibacterianos/uso terapêutico , Bacteriemia/metabolismo , Bacteriemia/microbiologia , Vias Biossintéticas , Modelos Animais de Doenças , Endocardite/metabolismo , Humanos , Meticilina/farmacologia , Coelhos
20.
Anal Chem ; 92(8): 6019-6025, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32255639

RESUMO

Although tremendous efforts have been devoted to providing specificity for molecular sensors, most of the methods focus on the structural variation of the binding or reaction site to improve selectivity. Herein, we report a new approach in which a chemical probe, possessing a mediocre recognition site, can successfully discriminate a target among various interferences only with electrochemical manipulation. The synthetic probe (1) was designed to react with a cyanide anion (CN-), and its dicyanovinyl group has selectivity toward CN- along with sulfides and biothiols resulting in similar adducts. However, the binding adduct between 1 and CN- (1-CN-) has significantly different energy levels that are only able to undergo electrochemical oxidation under ∼1.2 V (vs Ag/AgCl), generating strong electrochemiluminescence (ECL). The ECL emission from 1-CN- successfully discriminates CN- without any interferences from other analytes including sulfides and thiols and exhibits a linear correlation with CN- in a range of 1-400 µM (LOD = 0.04 µM, n = 5). Density functional theory (DFT) calculations and electrochemical studies supported the mechanism of CN- discrimination. The approach was finally applied to direct trace analysis of CN- in tap water (≥1 µM) and showed excellent performance suggesting a new, versatile, and rapid determination method for molecular toxins in real samples.


Assuntos
Complexos de Coordenação/química , Cianetos/análise , Técnicas Eletroquímicas , Corantes Fluorescentes/química , Irídio/química , Luminescência , Complexos de Coordenação/síntese química , Teoria da Densidade Funcional , Corantes Fluorescentes/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...