Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 353: 109806, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999051

RESUMO

Hepatocellular carcinoma (HCC) is an extremely aggressive malignancy that ranks as the sixth-leading cause of cancer-associated death worldwide. Recently, various epigenetic mechanisms including gene methylation were reported to be potential next era HCC therapeutics and biomarkers. Although inhibition of epigenetic enzymes including histone lysine demethylase 4 (KDM4) enhanced cell death in HCC cells, the detailed mechanism of cell death machinery is poorly understood. In this study, we found that ML324, a small molecule KDM4-specific inhibitor, induced the death of HCC cells in a general cell culture system and 3D spheroid culture with increased cleavage of caspase-3. Mechanistically, we identified that unfolded protein responses (UPR) were involved in ML324-induced HCC cell death. Incubation of HCC cells with ML324 upregulated death receptor 5 (DR5) expression through the activation transcription factor 3 (ATF3)-C/EBP homologous protein (CHOP)-dependent pathway. Moreover, we identified BIM protein as a mediator of ML324-induced apoptosis using CRISPR/Cas9 knockout analysis. We showed that the loss of Bim suppressed ML324-induced apoptosis by flow cytometry analysis, colony formation assay, and caspase-3 activation assay. Interestingly, BIM protein expression by ML324 was regulated by ATF3, CHOP, and DR5 which are factors involved in UPR. Specifically, we confirmed the regulating roles of KDM4E in Bim and CHOP expression using a chromatin immune precipitation (ChIP) assay. Physical binding of KDM4E to Bim and CHOP promoters decreased the response to ML324. Our findings suggest that KDM4 inhibition is a potent anti-tumor therapeutic strategy for human HCC, and further studies of UPR-induced apoptosis and the associated epigenetic functional mechanisms may lead to the discovery of novel target for future cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína 11 Semelhante a Bcl-2/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Oxiquinolina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Antineoplásicos/química , Proteína 11 Semelhante a Bcl-2/genética , Benzamidas/química , Benzamidas/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Neoplasias Hepáticas/patologia , Oxiquinolina/química , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
2.
Nanomaterials (Basel) ; 10(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781774

RESUMO

We demonstrated that Fe/Cr doped and pH-modified CeO2 nanoparticles (NPs) exhibit enhanced photocatalytic performance as compared to bare CeO2 NPs, using photocatalytic degradation. To assess the toxicity level of these double-modified CeO2 NPs on the human skin, they were introduced into HaCaT cells. The results of our conventional cellular toxicity assays (neutral red uptake and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide for assays) indicated that Cr@CeOx NPs prompt severe negative effects on the viability of human cells. Moreover, the results obtained by scanning transmission X-ray microscopy and bio-transmission electron microscope analysis showed that most of the NPs were localized outside the nucleus of the cells. Thus, serious genetic toxicity was unlikely. Overall, this study highlights the need to prevent the development of Cr@CeOx NP toxicity. Moreover, further research should aim to improve the photocatalytic properties and activity of these NPs while accounting for their stability issues.

3.
Sci Rep ; 9(1): 10965, 2019 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-31358847

RESUMO

Despite advances in the construction of catalysts based on metal oxide nanoparticles (MO NPs) for various industrial, biomedical, and daily-life applications, the biosafety concerns about these NPs still remain. Recently, the need to analyze and improve the safety of MO NPs along with attempts to enhance their catalytic performance has been strongly perceived. Here, we prepared multiple variants of Fe-doped zirconium oxide (Fe@ZrO2) NPs under different pH conditions; then, we assessed their toxicity and finally screened the variant that exhibited the best catalytic performance. To assess the NP toxicity, the prepared NPs were introduced into three types of human cells originally obtained from different body parts likely to be most affected by NPs (skin, lung, and kidney). Experimental results from conventional cellular toxicity assays including recently available live-cell imaging indicated that none of the variants exerted severe negative effects on the viability of the human cells and most NPs were intracellular localized outside of nucleus, by which severe genotoxicity is unexpected. In contrast, Fe@ZrO2 NPs synthesized under a basic condition (pH = 13.0), exhibited the highest catalytic activities for three different reactions; each was biochemical (L-cysteine oxidation) or photochemical one (4-chlorophenol degradation and OH radical formation with benzoic acid). This study demonstrates that catalytic Fe@ZrO2 NPs with enhanced activities and modest or insignificant toxicity can be effectively developed and further suggests a potential for the use of these particles in conventional chemical reactions as well as in recently emerging biomedical and daily-life nanotechnology applications.


Assuntos
Ferro/química , Nanopartículas Metálicas/química , Zircônio/química , Células A549 , Catálise , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio
5.
Sci Rep ; 8(1): 16777, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30425306

RESUMO

Catalytic activities of transition metal-doped IrO2 nanoparticles (TM-IrO2 NPs; TM = Cr, Mn, Fe, Co, or Ni) are compared for various oxidation reactions such as electrochemical oxygen evolution reaction (OER), gas-phase photo-oxidation of thiol function group, and CO oxidative conversion. Here, we discovered a series of TM-IrO2 catalysts have a common activity trend for these oxidation reactions, and their activities are closely related with modified electronic states of IrO2, strongly affected by the types of the transition metal across the periodic table. For all oxidation reactions, Cr- and Mn-IrO2 achieved the highest oxidation catalytic activity, and sequentially decreased activities were obtained with Fe, Co, and Ni doped IrO2. For instance, the highest OER activity was achieved by Cr or Mn doping exhibiting the smallest overpotential η = 275~230 mV at 10 mA/cm2, while Ni-IrO2 showed rather larger overpotential (η = 347 mV) even compared with non-doped IrO2 (η = 314 mV). Scanning transmission X-ray microscopy and high-resolution photoemission spectra of TM-IrO2 indicated dopant metals modified the Ir-O interaction and thus increasing oxygen vacancy defects in IrO2. Strongly positive correlation was observed between the catalytic activities and vacancy states. The amount of defect related signals was observed the most for Cr- or Mn-IrO2, less so for Fe- or Co-IrO2, and unnoted for Ni-IrO2 compared with bare IrO2. Based on these catalytic activities and surface spectroscopic analysis results, vacancy defects induced by doping in TM-IrO2 NPs are proposed to contribute to enhance the oxidation activities.

6.
Nanoscale Res Lett ; 12(1): 426, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28651385

RESUMO

To compare the catalytic oxidation activities of reduced graphene oxide (rGO) and rGO samples doped with five different transition metals (TM-rGO), we determine their effects on the oxidation of L-cysteine (Cys) in aqueous solution by performing electrochemistry (EC) measurements and on the photocatalytic oxidation of Cys by using high-resolution photoemission spectroscopy (HRPES) under UV illumination. Our results show that Cr-, Fe-, and Co-doped rGO with 3+ charge states (stable oxide forms: Cr3+, Fe3+, and Co3+) exhibit enhanced catalytic activities that are due to the charge states of the doped metal ions as we compare them with Cr-, Fe-, and Co-doped rGO with 2+ charge states. The SEM images and the corresponding EC measurements for (a) Cr3+, (b) Fe3+, and

7.
Adv Mater ; 25(4): 524-8, 2013 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-23125035

RESUMO

A new polymeric semiconductor, PDPPDTSE, is reported which is composed of a diketopyrrolopyrrole moiety and selenophenylene vinylene selenophene, with a high field-effect mobility achieved through intermolecular donor-acceptor interactions. The field-effect mobility of OFET devices based on PDPPDTSE by spin-casting is 4.97 cm(2) V(-1) s(-1) , which is higher than predecessor polymeric semiconductors.

8.
J Biotechnol ; 96(3): 213-21, 2002 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12044550

RESUMO

A novel method for immobilizing large DNA fragments on a solid surface was developed. A mixed self-assembled monolayer of thiolated single-stranded DNA with inert alkanethiol was generated on a gold (Au) surface through the Au-S reaction. Surface-tethered DNA generated by this method was compatible with various genetic engineering techniques, including hybridization, polymerization, restriction enzyme digestion and ligation. Kinetic control of surface coverage of immobilized DNA was critical for optimizing genetic engineering techniques on solid-phase. Multi-step reaction schemes utilizing various genetic engineering techniques described above were employed for solid-phase gene assembly. We were able to immobilize DNA fragments of up to 1180 bp on a solid surface. Furthermore, we showed that these immobilized genes can be regenerated by PCR. The present work suggests that these types of assembled genes can be used to store and regenerate genes on solid-phase.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/isolamento & purificação , Engenharia Genética/métodos , Ouro/química , Oligonucleotídeos/metabolismo , Análise de Sequência de DNA/métodos , Sequência de Bases/fisiologia , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/farmacocinética , Modelos Químicos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA