Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(18): 12601-12608, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38687243

RESUMO

The burgeoning necessity to discover new methodologies for the synthesis of long-chain hydrocarbons and oxygenates, independent of traditional reliance on high-temperature, high-pressure, and fossil fuel-based carbon, is increasingly urgent. In this context, we introduce a nonthermal plasma-based strategy for the initiation and propagation of long-chain carbon growth from biogas constituents (CO2 and CH4). Utilizing a plasma reactor operating at atmospheric room temperature, our approach facilitates hydrocarbon chain growth up to C40 in the solid state (including oxygenated products), predominantly when CH4 exceeds CO2 in the feedstock. This synthesis is driven by the hydrogenation of CO2 and/or amalgamation of CHx radicals. Global plasma chemistry modeling underscores the pivotal role of electron temperature and CHx radical genesis, contingent upon varying CO2/CH4 ratios in the plasma system. Concomitant with long-chain hydrocarbon production, the system also yields gaseous products, primarily syngas (H2 and CO), as well as liquid-phase alcohols and acids. Our finding demonstrates the feasibility of atmospheric room-temperature synthesis of long-chain hydrocarbons, with the potential for tuning the chain length based on the feed gas composition.

2.
J Am Chem Soc ; 145(51): 28233-28239, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38103175

RESUMO

By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.

3.
Microbiol Spectr ; 11(4): e0003423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428084

RESUMO

The effect of plasma-activated water (PAW) generated with a dielectric barrier discharge diffusor (DBDD) system on microbial load and organoleptic quality of cucamelons was investigated and compared to the established sanitizer, sodium hypochlorite (NaOCl). Pathogenic serotypes of Escherichia coli, Salmonella enterica, and Listeria monocytogenes were inoculated onto the surface of cucamelons (6.5 log CFU g-1) and into the wash water (6 log CFU mL-1). PAW treatment involved 2 min in situ with water activated at 1,500 Hz and 120 V and air as the feed gas; NaOCl treatment was a wash with 100 ppm total chlorine; control treatment was a wash with tap water. PAW treatment produced a 3-log CFU g-1 reduction of pathogens on the cucamelon surface without negatively impacting quality or shelf life. NaOCl treatment reduced the pathogenic bacteria on the cucamelon surface by 3 to 4 log CFU g-1; however, this treatment also reduced fruit shelf life and quality. Both systems reduced 6-log CFU mL-1 pathogens in the wash water to below detectable limits. The critical role of superoxide anion radical (·O2-) in the antimicrobial power of DBDD-PAW was demonstrated through a Tiron scavenger assay, and chemistry modeling confirmed that ·O2- generation readily occurs in DBDD-PAW generated with the employed settings. Modeling of the physical forces produced during plasma treatment showed that bacteria likely experience strong local electric fields and polarization. We hypothesize that these physical effects synergize with reactive chemical species to produce the acute antimicrobial activity seen with the in situ PAW system. IMPORTANCE Plasma-activated water (PAW) is an emerging sanitizer in the fresh food industry, where food safety must be achieved without a thermal kill step. Here, we demonstrate PAW generated in situ to be a competitive sanitizer technology, providing a significant reduction of pathogenic and spoilage microorganisms while maintaining the quality and shelf life of the produce item. Our experimental results are supported by modeling of the plasma chemistry and applied physical forces, which show that the system can generate highly reactive ·O2- and strong electric fields that combine to produce potent antimicrobial power. In situ PAW has promise in industrial applications as it requires only low power (12 W), tap water, and air. Moreover, it does not produce toxic by-products or hazardous effluent waste, making it a sustainable solution for fresh food safety.


Assuntos
Anti-Infecciosos , Desinfetantes , Salmonella enterica , Microbiologia de Alimentos , Frutas/microbiologia , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Desinfetantes/farmacologia
4.
Yonsei Med J ; 63(8): 717-723, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35914753

RESUMO

PURPOSE: The prevalence of Group B Streptococcus (GBS) colonization in pregnant Korean women is increasing; however, nationwide studies are lacking. Therefore, we aimed to analyze regional colonization rates and antimicrobial susceptibility for GBS in pregnant Korean women through a nationwide survey. MATERIALS AND METHODS: From January 2018 to December 2020, data from the Seoul Clinical Laboratories on vaginal swab cultures were retrospectively analyzed to detect maternal GBS carriers. Each swab specimen was inoculated onto a 5% blood agar plate and incubated at 35℃-37℃ in a 5% CO2 incubator for 24 h. GBS isolates were identified using a Microflex MALDI Biotyper. Antimicrobial susceptibility tests were performed using the Vitek 2 automated system. RESULTS: The overall nationwide GBS colonization rate in pregnant Korean women was found to be 10.6% (3578/33721). The maternal GBS colonization rates ranged from 10.5%-10.8% over the 3-year study period. The GBS colonization rates by province, in descending order, were as follows: Jeolla-do, 13.2%; Gangwon-do, 12.0%; Chungcheong-do, 11.8%; Gyeonggi-do, 11.3%; Seoul, 10.2%; and Gyeongsang-do, 9.6%. During the study period, the resistance rates against chloramphenicol, levofloxacin, clindamycin, erythromycin, and tetracycline were 2.6%-2.7%, 18.2%-19.6%, 33.4%-35.7%, 35.6%-36.8%, and 50.5%-53.3%, respectively. CONCLUSION: In pregnant Korean women, GBS colonization rates were in the range of 9.6%-13.2%, with Gyeongsang-do being the lowest and Jeolla-do the highest. The resistance rate against clindamycin was high (33.4%-35.7%). GBS colonization rates during pregnancy should be studied nationwide according to the Centers for Disease Control and Prevention-recommended guidelines with periodic antimicrobial resistance monitoring.


Assuntos
Complicações Infecciosas na Gravidez , Streptococcus agalactiae , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clindamicina/farmacologia , Feminino , Humanos , Testes de Sensibilidade Microbiana , Gravidez , Complicações Infecciosas na Gravidez/tratamento farmacológico , Complicações Infecciosas na Gravidez/epidemiologia , República da Coreia/epidemiologia , Estudos Retrospectivos , Vagina
5.
Sensors (Basel) ; 21(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530391

RESUMO

Surface-enhanced Raman spectroscopy (SERS) technology is an attractive method for the prompt and accurate on-site screening of illicit drugs. As portable Raman systems are available for on-site screening, the readiness of SERS technology for sensing applications is predominantly dependent on the accuracy, stability and cost-effectiveness of the SERS strip. An atmospheric-pressure plasma-assisted chemical deposition process that can deposit an even distribution of nanogold particles in a one-step process has been developed. The process was used to print a nanogold film on a paper-based substrate using a HAuCl4 solution precursor. X-ray photoelectron spectroscopy (XPS) analysis demonstrates that the gold has been fully reduced and that subsequent plasma post-treatment decreases the carbon content of the film. Results for cocaine detection using this substrate were compared with two commercial SERS substrates, one based on nanogold on paper and the currently available best commercial SERS substrate based on an Ag pillar structure. A larger number of bands associated with cocaine was detected using the plasma-printed substrate than the commercial substrates across a range of cocaine concentrations from 1 to 5000 ng/mL. A detection limit as low as 1 ng/mL cocaine with high spatial uniformity was demonstrated with the plasma-printed substrate. It is shown that the plasma-printed substrate can be produced at a much lower cost than the price of the commercial substrate.

6.
Sci Rep ; 6: 38610, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934958

RESUMO

Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Gases em Plasma/farmacologia , Antibacterianos/química , Argônio/química , Biofilmes/efeitos dos fármacos , Parede Celular , Testes de Sensibilidade Microbiana , Gases em Plasma/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...