Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38397749

RESUMO

Inflammation is a natural protective process through which the immune system responds to injury, infection, or irritation. However, hyperinflammation or long-term inflammatory responses can cause various inflammatory diseases. Although idebenone was initially developed for the treatment of cognitive impairment and dementia, it is currently used to treat various diseases. However, its anti-inflammatory effects and regulatory functions in inflammatory diseases are yet to be elucidated. Therefore, this study aimed to investigate the anti-inflammatory effects of idebenone in cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation. Murine models of cecal ligation puncture-induced sepsis and lipopolysaccharide-induced systemic inflammation were generated, followed by treatment with various concentrations of idebenone. Additionally, lipopolysaccharide-stimulated macrophages were treated with idebenone to elucidate its anti-inflammatory effects at the cellular level. Idebenone treatment significantly improved survival rate, protected against tissue damage, and decreased the expression of inflammatory enzymes and cytokines in mice models of sepsis and systemic inflammation. Additionally, idebenone treatment suppressed inflammatory responses in macrophages, inhibited the NF-κB signaling pathway, reduced reactive oxygen species and lipid peroxidation, and normalized the activities of antioxidant enzyme. Idebenone possesses potential therapeutic application as a novel anti-inflammatory agent in systemic inflammatory diseases and sepsis.

2.
Cancers (Basel) ; 16(1)2023 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-38201533

RESUMO

Snail is a key regulator of the epithelial-mesenchymal transition (EMT), the key step in the tumorigenesis and metastasis of tumors. Although induction of Snail transcription precedes the induction of EMT, the post-translational regulation of Snail is also important in determining Snail protein levels, stability, and its ability to induce EMT. Several kinases are known to enhance the stability of the Snail protein by preventing its ubiquitination; however, the precise molecular mechanisms by which these kinases prevent Snail ubiquitination remain unclear. Here, we identified ERK3 as a novel kinase that interacts with Snail and enhances its protein stability. Although ERK3 could not directly phosphorylate Snail, Erk3 increased Snail protein stability by inhibiting the binding of FBXO11, an E3 ubiquitin ligase that can induce Snail ubiquitination and degradation, to Snail. Importantly, functional studies and analysis of clinical samples indicated the crucial role of ERK3 in the regulation of Snail protein stability in pancreatic cancer. Therefore, we conclude that ERK3 is a key regulator for enhancing Snail protein stability in pancreatic cancer cells by inhibiting the interaction between Snail and FBXO11.

3.
Cancers (Basel) ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35008419

RESUMO

Rho GDP dissociation inhibitor 2 (RhoGDI2), a regulator of Rho family GTPase, has been known to promote tumor growth and malignant progression in gastric cancer. We previously showed that RhoGDI2 positively regulates Rac1 activity and Rac1 activation is critical for RhoGDI2-induced gastric cancer cell invasion. In this study, to identify the precise molecular mechanism by which RhoGDI2 activates Rac1 activity, we performed two-hybrid screenings using yeast and found that RhoGDI2 plays an important role in the interaction between Rac1, Filamin A and Rac1 activation in gastric cancer cells. Moreover, we found that Filamin A is required for Rac1 activation and the invasive ability of gastric cancer cells. Depletion of Filamin A expression markedly reduced Rac1 activity in RhoGDI2-expressing gastric cancer cells. The migration and invasion ability of RhoGDI2-expressing gastric cancer cells also substantially decreased when Filamin A expression was depleted. Furthermore, we found that Trio, a Rac1-specific guanine nucleotide exchange factor (GEF), is critical for Rac1 activation and the invasive ability of gastric cancer cells. Therefore, we conclude that RhoGDI2 increases Rac1 activity by recruiting Rac1 to Filamin A and enhancing the interaction between Rac1 and Trio, which is critical for the invasive ability of gastric cancer cells.

4.
Cancer Res ; 79(16): 4135-4148, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31209060

RESUMO

Snail is a key regulator of epithelial-mesenchymal transition (EMT), which is a major step in tumor metastasis. Although the induction of Snail transcription precedes EMT, posttranslational regulation, especially phosphorylation of Snail, is critical for determining Snail protein levels or stability, subcellular localization, and the ability to induce EMT. To date, several kinases are known that enhance the stability of Snail by preventing its ubiquitination; however, the molecular mechanism(s) underlying this are still unclear. Here, we identified p38 MAPK as a crucial posttranslational regulator that enhances the stability of Snail. p38 directly phosphorylated Snail at Ser107, and this effectively suppressed DYRK2-mediated Ser104 phosphorylation, which is critical for GSK3ß-dependent Snail phosphorylation and ßTrCP-mediated Snail ubiquitination and degradation. Importantly, functional studies and analysis of clinical samples established a crucial role for the p38-Snail axis in regulating ovarian cancer EMT and metastasis. These results indicate the potential therapeutic value of targeting the p38-Snail axis in ovarian cancer. SIGNIFICANCE: These findings identify p38 MAPK as a novel regulator of Snail protein stability and potential therapeutic target in ovarian cancer.


Assuntos
Glicogênio Sintase Quinase 3 beta/metabolismo , Neoplasias Ovarianas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Neoplasias Ovarianas/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Serina/metabolismo , Fatores de Transcrição da Família Snail/química , Fatores de Transcrição da Família Snail/genética , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Quinases Dyrk
5.
Mol Oncol ; 13(5): 1280-1295, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30927556

RESUMO

The epithelial-mesenchymal transition (EMT) plays a pivotal role in the conversion of early-stage tumors into invasive malignancies. The transcription factor Snail, an extremely unstable protein whose subcellular levels are regulated by many E3 ubiquitin ligases, promotes EMT as well as associated pathological characteristics including migration, invasion, and metastasis. Through yeast two-hybrid screening, we identified the carboxyl terminus of Hsc70-interacting protein (CHIP) as a novel Snail ubiquitin ligase that interacts with Snail to induce ubiquitin-mediated proteasomal degradation. Inhibition of CHIP expression increases Snail protein levels, induces EMT, and enhances in vitro migration and invasion as well as in vivo metastasis of ovarian cancer cells. In turn, Snail depletion abrogates all phenomena induced by CHIP depletion. Finally, Snail and CHIP expression is inversely correlated in ovarian tumor tissues. These findings establish the CHIP-Snail axis as a post-translational mechanism of EMT and cancer metastasis regulation.


Assuntos
Regulação para Baixo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Animais , Feminino , Células HCT116 , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Fatores de Transcrição da Família Snail/genética , Ubiquitina-Proteína Ligases/genética
6.
Gastroenterol Res Pract ; 2019: 3024970, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30911294

RESUMO

Calponin 3 (CNN3) is an F-actin-binding protein that regulates actin cytoskeletal rearrangement. However, the role of CNN3 in cancer cell invasion and resistance to chemotherapeutic agents has not yet been investigated. The present study was undertaken to investigate whether CNN3 influences cancer-related phenotypes in gastric cancer. We demonstrate that CNN3 contributes to cell invasion and resistance to doxorubicin in gastric cancer. CNN3 expression was markedly elevated in highly invasive cancer cell lines compared to less invasive or noninvasive cancer cell lines. Depletion of CNN3 protein suppressed the invasive ability of gastric cancer cells. The highly invasive MKN-28 gastric cancer cells were more resistant to doxorubicin than the noninvasive MKN-45 cells; however, knockdown of CNN3 expression in MKN-28 cells resensitized them to doxorubicin treatment. Taken together, our results suggest that CNN3 plays a key role in invasiveness and doxorubicin resistance in gastric cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...