Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 41(6): 111629, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351392

RESUMO

Platinum (Pt) compounds such as oxaliplatin are among the most commonly prescribed anti-cancer drugs. Despite their considerable clinical impact, the molecular basis of platinum cytotoxicity and cancer specificity remain unclear. Here we show that oxaliplatin, a backbone for the treatment of colorectal cancer, causes liquid-liquid demixing of nucleoli at clinically relevant concentrations. Our data suggest that this biophysical defect leads to cell-cycle arrest, shutdown of Pol I-mediated transcription, and ultimately cell death. We propose that instead of targeting a single molecule, oxaliplatin preferentially partitions into nucleoli, where it modifies nucleolar RNA and proteins. This mechanism provides a general approach for drugging the increasing number of cellular processes linked to biomolecular condensates.


Assuntos
Antineoplásicos , Platina , Oxaliplatina/farmacologia , Platina/metabolismo , Nucléolo Celular/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , RNA Polimerase I/metabolismo
2.
Nat Commun ; 11(1): 5554, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144560

RESUMO

Phase separation of specific biomolecules into liquid droplet-like condensates is a key mechanism to form membrane-less organelles, which spatio-temporally organize diverse biochemical processes in cells. To investigate the working principles of these biomolecular condensates as dynamic reaction centers, precise control of diverse condensate properties is essential. Here, we design a strategy for metal ion-induced clustering of minimal protein modules to produce liquid protein condensates, the properties of which can be widely varied by simple manipulation of the protein clustering systems. The droplet forming-minimal module contains only a single receptor protein and a binding ligand peptide with a hexahistidine tag for divalent metal ion-mediated clustering. A wide range of protein condensate properties such as droplet forming tendency, droplet morphology, inside protein diffusivity, protein recruitment, and droplet density can be varied by adjusting the nature of receptor/ligand pairs or used metal ions, metal/protein ratios, incubation time, binding motif variation on recruited proteins, and even spacing between receptor/ligand pairs and the hexahistidine tag. We also demonstrate metal-ion-induced protein phase separation in cells. The present phase separation strategy provides highly versatile protein condensates, which will greatly facilitate investigation of molecular and structural codes of droplet-forming proteins and the monitoring of biomolecular behaviors inside diverse protein condensates.


Assuntos
Proteínas de Membrana/química , Metais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Análise por Conglomerados , Fluorescência , Células HeLa , Humanos , Íons , Ligantes , Mutação/genética , Engenharia de Proteínas , Domínios de Homologia de src
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA