Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 8(14): 2392-8, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-25891531

RESUMO

Perovskite solar cells (PSCs) are the most promising candidates as next-generation solar energy conversion systems. To design a highly efficient PSC, understanding electronic properties of mesoporous metal oxides is essential. Herein, we explore the effect of Nb doping of TiO2 on electronic structure and photovoltaic properties of PSCs. Light Nb doping (0.5 and 1.0 at %) increased the optical band gap slightly, but heavy doping (5.0 at %) distinctively decreased it. The relative Fermi level position of the conduction band is similar for the lightly Nb-doped TiO2 (NTO) and the undoped TiO2 whereas that of the heavy doped NTO decreased by as much as ∼0.3 eV. The lightly doped NTO-based PSCs exhibit 10 % higher efficiency than PSCs based on undoped TiO2 (from 12.2 % to 13.4 %) and 52 % higher than the PSCs utilizing heavy doped NTO (from 8.8 % to 13.4 %), which is attributed to fast electron injection/transport and preserved electron lifetime, verified by transient photocurrent decay and impedance studies.


Assuntos
Compostos de Cálcio/química , Fontes de Energia Elétrica , Nióbio/química , Óxidos/química , Energia Solar , Titânio/química , Transporte de Elétrons
2.
ACS Nano ; 9(4): 4447-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25827409

RESUMO

Nature designs circulatory systems with hierarchically organized networks of gradually tapered channels ranging from micrometer to nanometer in diameter. In most hard tissues in biological systems, fluid, gases, nutrients and wastes are constantly exchanged through such networks. Here, we developed a biologically inspired, hierarchically organized structure in ceramic to achieve effective permeation with minimum void region, using fabrication methods that create a long-range, highly interconnected nanochannel system in a ceramic biomaterial. This design of a synthetic model-material was implemented through a novel pressurized sintering process formulated to induce a gradual tapering in channel diameter based on pressure-dependent polymer agglomeration. The resulting system allows long-range, efficient transport of fluid and nutrients into sites and interfaces that conventional fluid conduction cannot reach without external force. We demonstrate the ability of mammalian bone-forming cells placed at the distal transport termination of the nanochannel system to proliferate in a manner dependent solely upon the supply of media by the self-powering nanochannels. This approach mimics the significant contribution that nanochannel transport plays in maintaining living hard tissues by providing nutrient supply that facilitates cell growth and differentiation, and thereby makes the ceramic composite "alive".


Assuntos
Materiais Biomiméticos/química , Cerâmica/química , Nanotecnologia/métodos , Materiais Biomiméticos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cerâmica/farmacologia , Humanos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Polietilenoglicóis/química
3.
Chemistry ; 21(12): 4655-63, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25676609

RESUMO

Advanced functional materials incorporating well-defined multiscale architectures are a key focus for multiple nanotechnological applications. However, strategies for developing such materials, including nanostructuring, nano-/microcombination, hybridization, and so on, are still being developed. Here, we report a facile, scalable biomineralization process in which Micrococcus lylae bacteria are used as soft templates to synthesize 3D hierarchically structured magnetite (Fe3O4) microspheres for use as Li-ion battery anode materials and in water treatment applications. Self-assembled Fe3O4 microspheres with flower-like morphologies are systematically fabricated from biomineralized 2D FeO(OH) nanoflakes at room temperature and are subsequently subjected to post-annealing at 400 °C. In particular, because of their mesoporous properties with a hollow interior and the improved electrical conductivity resulting from the carbonized bacterial templates, the Fe3 O4 microspheres obtained by calcining the FeO(OH) in Ar exhibit enhanced cycle stability and rate capability as Li-ion battery anodes, as well as superior adsorption of organic pollutants and toxic heavy metals.


Assuntos
Fontes de Energia Elétrica , Lítio/química , Microesferas , Purificação da Água , Adsorção , Carbono/química , Condutividade Elétrica , Óxido Ferroso-Férrico/química , Íons/química , Metais Pesados/química , Metais Pesados/isolamento & purificação , Micrococcus/metabolismo , Porosidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
4.
Nanoscale ; 7(6): 2790-6, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25585208

RESUMO

Three-dimensional (3-D) architectures can provide significant advantages as lithium ion microbattery electrodes by lengthening the vertical dimension. In addition, the nanoscale hierarchy and hollow properties are important factors for enhancing the performance. Here, we prepared a 3-D nickel sulfide nanoarchitecture via a facile low-temperature solution route. A Kirkendall effect-driven sulfidation of a 3-D nickel electrode was used to produce a hollow 3-D structure. Moreover, a nanoscale hierarchy can be formed with the use of highly concentrated sulfur species. The morphology, structure, and chemical composition of the 3-D nickel sulfide electrode are characterized in detail, and the formation mechanism is discussed based on a time-resolved study. The 3-D nickel sulfide electrodes show an outstanding areal capacity (1.5 mA h cm(-2) at a current rate of 0.5 mA cm(-2)), making this electrode a potential electrode for 3-D lithium ion microbatteries with a large energy density. Moreover, this strategy is expected to provide a general fabrication method for transition metal sulfide nanoarchitectures.

5.
Langmuir ; 30(51): 15531-9, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25470414

RESUMO

Hollow structured materials have shown great advantages for use in photoelectrochemical devices. However, their poor charge transport limits overall device performance. Here, we report a unique 3-D hollow architecture of TiO2 that greatly improves charge transport properties. We found that citric acid (CA) plays crucial roles in the formation of the 3-D hollow architecture. First, CA controls the hydrolysis rate of Ti ions and facilitates surface hydrolysis on templates during hydrothermal synthesis. Second, CA suppresses the growth of the carbon template at the initial reaction stage, resulting in the formation of comparatively small hollow fibers. More importantly, a prolonged hydrothermal reaction with CA enables a hollow sphere to grow into entangled hollow fibers via biomimetic swallowing growth. To demonstrate advantages of the 3-D hollow architecture for photoelectrochemical devices, we evaluated its photoelectrochemical performance, specifically the electrolyte diffusion and electron dynamics, by employing dye-sensitized solar cells as a model device. A systemic analysis reveals that the 3-D hollow architecture greatly improves both the electrolyte diffusion and electron transport compared to those of the nanoparticle and hollow sphere due to the elongated porous hollow morphology as well as the densely interconnected nanoparticles at the wall layer.

6.
Nanoscale ; 6(15): 8649-55, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24942487

RESUMO

We report one dimensional (1-D) transparent-conducting-oxide arrays coated with light-absorbing semiconductors to simultaneously maximize light harvesting and charge collection in a photoelectrochemical (PEC) system. Tin-doped indium oxide (ITO) nanowire (NW) arrays are prepared on ITO thin-film substrates as the transparent-conducting-oxide, and TiO2 or CdSe/CdS/TiO2 thin layers were coated on the ITO NW arrays as the solar light-absorbing layers. The optimal PEC performance, 0.85% under 100 mW cm(-2) of light illumination, is obtained from ∼ 30 µm-long ITO NW, which is covered with ∼ 20 nm-thick TiO2 nanoshell. We finally demonstrate that the ITO NW-based photoelectrode is also compatible with one of the most efficient visible-light sensitizers, the CdS/CdSe quantum dot. Our approach using the transparent conducting 1-D array has wide potential to improve the PEC performances of conventional semiconducting materials through liberation from the poor charge transport.

7.
J Hazard Mater ; 275: 10-8, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24830569

RESUMO

Heterostructures can play a role in enhanced photoinduced electrochemical and catalytic reactions due to the advantageous combination of two compounds. Herein, we demonstrate the fabrication of Sb:SnO2@TiO2-SrTiO3 3D heterostructures via a simple hydrothermal method using a conductive Sb:SnO2@TiO2 nanobelt electrode as a template. XRD, FESEM, and TEM analyses confirm that a well-dispersed and crystalized SrTiO3 layer is formed on the surface of TiO2 nanorods. The photoelectrochemical (PEC) performance of the heterostructure is optimized by controlling the reaction time. Details about the effect of the hydrothermal reaction time on the PEC performance are discussed. The optimized Sb:SnO2@TiO2-SrTiO3 heterostructure exhibited a higher onset potential and a saturated photocurrent in comparison to the Sb:SnO2@TiO2 nanostructure. The result is attributed to a Fermi level shift and a blocking layer effect caused by the SrTiO3. Furthermore, the photocatalytic degradation of methylene blue was significantly enhanced on the optimized Sb:SnO2@TiO2-SrTiO3. This work demonstrates that a synergetic effect between three-dimensional nanoarchitecturing and a heterojunction structure is responsible for enhanced PEC as well as improved photocatalytic performance levels, both of which can be extended to other metal-oxide and/or ternary compounds.


Assuntos
Antimônio/química , Nanoestruturas/química , Óxidos/química , Estrôncio/química , Compostos de Estanho/química , Titânio/química , Catálise , Corantes/química , Técnicas Eletroquímicas , Eletrodos , Azul de Metileno/química , Nanoestruturas/ultraestrutura , Óxidos/efeitos da radiação , Fotólise , Estrôncio/efeitos da radiação , Luz Solar , Titânio/efeitos da radiação , Raios Ultravioleta
8.
Phys Chem Chem Phys ; 16(22): 10408-13, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24752705

RESUMO

A particle-based photocatalyst with a permanent internal field prepared by a corona poling method is presented as a novel approach to enhance the hydrogen evolution reaction in a particulate-suspension system. Photocatalytic activity of K0.5Na0.5NbO3 was significantly improved by 7.4 times after the polarization.

9.
Langmuir ; 30(3): 700-9, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24422661

RESUMO

The direct printing synthesis of metal oxide hollow spheres in the form of film on a substrate is reported for the first time. This method offers facile, scalable, high-throughput production and device fabrication processes. The printing was carried out via a doctor-blade method using Cu(II) complex ink with controllable high viscosity based on formate-amine coupling. Following only thermal heating in air, well-defined polycrystalline copper oxide hollow spheres with a submicrometer diameter (≤1 µm) were formed spontaneously while being assembled in the form of a film with good adhesion on the substrate. This spontaneous hollowing mechanism was found to result from the Kirkendall effect during oxidation at elevated temperature. The CuO films with hollow spheres, prepared via direct printing synthesis at 500 °C, led to the creation of a superior p-type gas sensor and photocathode for photoelectrochemical water splitting with completely hollow cores, a rough/porous shell structure, a single phase, high crystallinity, and no organic/polymer residue. As a result, the CuO hollow-sphere films showed high gas responses and permissible response speeds to reducing gases and high photocurrent density compared to conventional CuO powder films and the values previously reported. These results exemplify the successful realization of a high-throughput printing fabrication method for the creation of superior nanostructured devices.

10.
ACS Appl Mater Interfaces ; 6(1): 268-74, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24397749

RESUMO

A highly efficient 1-D flexible supercapacitor with a stainless steel mesh (SSM) substrate is demonstrated. Indium tin oxide (ITO) nanowires are prepared on the surface of the stainless steel fiber (SSF), and MnO2 shell layers are coated onto the ITO/SSM electrode by means of electrodeposition. The ITO NWs, which grow radially on the SSF, are single-crystalline and conductive enough for use as a current collector for MnO2-based supercapacitors. A flake-shaped, nanoporous, and uniform MnO2 shell layer with a thickness of ~130 nm and an average crystallite size of ~2 nm is obtained by electrodeposition at a constant voltage. The effect of the electrode geometry on the supercapacitor properties was investigated using electrochemical impedance spectroscopy, cyclic voltammetry, and a galvanostatic charge/discharge study. The electrodes with ITO NWs exhibit higher specific capacitance levels and good rate capability owing to the superior electronic/ionic transport capabilities resulting from the open pore structure. Moreover, the use of a porous mesh substrate (SSM) increases the specific capacitance to 667 F g(-1) at 5 mV s(-1). In addition, the electrode with ITO NWs and the SSM shows very stable cycle performance (no decrease in the specific capacitance after 5000 cycles).

11.
ChemSusChem ; 7(2): 501-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24347268

RESUMO

Among ternary oxides, Zn2 SnO4 (ZSO) is considered for dye-sensitized solar cells (DSSCs) because of its wide bandgap, high optical transmittance, and high electrical conductivity. However, ZSO-based DSSCs have a poor performance record owing largely to the absence of systematic efforts to enhance their performance. Herein, general strategies are proposed to improve the performance of ZSO-based DSSCs involving interfacial engineering/modification of the photoanode. A conformal ZSO thin film (blocking layer) deposited at the fluorine-doped tin oxide-electrolyte interface by pulsed laser deposition suppressed the back-electron transfer effectively while maintaining a high optical transmittance, which resulted in a 22 % improvement in the short-circuit photocurrent density. Surface modification of ZSO nanoparticles (NPs) resulted in an ultrathin ZnO shell layer, a 9 % improvement in the open-circuit voltage, and a 4 % improvement in the fill factor because of the reduced electron recombination at the ZSO NPs-electrolyte interface. The ZSO-based DSSCs exhibited a faster charge injection and electron transport than their TiO2 -based counterparts, and their superior properties were not inhibited by the ZnO shell layer, which indicates their feasibility for highly efficient DSSCs. Each interfacial engineering strategy could be applied to the ZSO-based DSSC independently to lead to an improved conversion efficiency of 6 %, a very high conversion efficiency for a non-TiO2 based DSSC.


Assuntos
Fontes de Energia Elétrica , Elétrons , Luz Solar , Compostos de Estanho/química , Eletroquímica , Óxido de Zinco/química
12.
ACS Nano ; 8(1): 634-41, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24299655

RESUMO

The synthesis of pure whitlockite (WH: Ca18Mg2(HPO4)2(PO4)12) has remained a challenge even though it is the second most abundant inorganic in living bone. Although a few reports about the precipitation of WH in heterogeneous phases have been published, to date, synthesizing WH without utilizing any effects of a buffer or various other ions remains difficult. Thus, the related research fields have encountered difficulties and have not been fully developed. Here, we developed a large-scale synthesis method for pure WH nanoparticles in a ternary Ca(OH)2-Mg(OH)2-H3PO4 system based on a systematic approach. We used excess Mg(2+) to impede the growth of hydroxyapatite (HAP: Ca10(PO4)6(OH)2) and the formation of other kinetically favored calcium phosphate intermediate phases. In addition, we designed and investigated the synthesis conditions of WH under the acidic pH conditions required to dissolve HAP, which is the most thermodynamically stable phase above pH 4.2, and to incorporate the HPO4(2-) group into the chemical structure of WH. We demonstrated that pure WH nanoparticles can be precipitated under Mg(2+)-rich and acidic pH conditions without any intermediate phases. Interestingly, this synthesized nano-WH showed comparable biocompatibility with HAP. Our methodology for determining the synthesis conditions of WH could provide a new platform for investigating other important precipitants in aqueous systems.


Assuntos
Materiais Biocompatíveis , Osso e Ossos/metabolismo , Fosfatos de Cálcio/metabolismo , Nanopartículas , Células Cultivadas , Durapatita/química , Humanos , Microscopia Eletrônica de Transmissão , Termodinâmica , Difração de Raios X
13.
J Nanosci Nanotechnol ; 14(12): 9307-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25971056

RESUMO

The spinel Li4Ti5O12 (LTO) is a promising candidate as a superior electrode material for energy storage devices due to the extremely small volume expansion/contraction during the charge/discharge processes of a battery. There are various synthetic approaches for the nanostructured LTO electrode: sol-gel, sonochemical, solution-combustion, hydrothermal methods, and others. Herein, three-dimensional (3D) high-density heterogeneous LTO architectures are fabricated by employing the TiO2 nanorods (NRs) branched SnO2 nanowire (NW) arrays as the template. The TiO2 NRs were effectively converted by the hydrothermal method into the LTO NRs that have a width of 40-nm and length of 100-nm, which induce branch/backbone structured LTO-SnO2 composites. Interestingly, the 3D LTO architectures exhibit unique geometrical shapes because the NRs are surrounded by small nanoparticles. We also discuss how the temperature and solvent affect the LTO nanostructure formation in detail. These results suggest that using a template can provide a new method for designing and synthesizing various classes of 3D architecturing synthesis.

14.
Nanoscale ; 5(23): 11725-32, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24114150

RESUMO

In recent studies of inorganic materials for energy applications, surface modification processes have been shown to be among the most effective methods to enhance the performance of devices. Here, we demonstrate a facile nano-decoration method which is generally applicable to anatase TiO2 nanostructures, as well as a nano-decorated hierarchical TiO2 nanostructure which improves the energy conversion efficiency of a dye-sensitized solar cell (DSSC). Using a facile sol-gel method, 0-D, 1-D, and 2-D type anatase TiO2 nanostructures were decorated with 200 nm long anatase TiO2 nanorods to create various hierarchical nanostructures. A structural analysis reveals that the branched nanorod has a highly crystalline anatase phase with anisotropic growth in the [001] longitudinal direction. When one of the hierarchical structures, a chestnut bur-like nanostructure, was employed in a dye-sensitized solar cell as a scattering layer, offering increased dye-loading properties, preserving a sufficient level of light-scattering ability and preserving superior charge transport and recombination properties as well, the energy conversion efficiency of the cell improved by 19% (from 7.16% to 9.09%) compared to a cell with a 0-D TiO2 sphere as a scattering layer. This generally applicable anatase nanorod-decorating method offers potential applications in various energy-conversion applications, especially in DSSCs, quantum-dot solar cells, photoelectrochemical water-splitting devices, photocatalysis, and lithium ion batteries.


Assuntos
Nanotubos/química , Energia Solar , Titânio/química , Corantes/química , Propriedades de Superfície
15.
Int J Artif Organs ; 36(7): 506-17, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23661555

RESUMO

We conducted experiments to determine the most effective calcium chelating agents for use in enhancing adhesion of human bone marrow mesenchymal stem cells (BM-MSCs) on nano-hydroxyapatite (nHAp)-coated titanium substrates by covalently immobilizing bone morphogenetic protein-2 (BMP-2). The quantity of amine groups on the chitosan chelated surface was 7 µg/surface area, and it was 1.4 µg/surface area on the alendronate chelated surface. The quantity of BMP-2 on the BMP-2 immobilized surface chelated with chitosan (4 ng/surface area) was higher than that on BMP-2 immobilized surface chelated with alendronate (2.2 ng/surface area). Contact angles of the nHAp-coated titanium, alendronate chelated, chitosan chelated, and BMP-2 immobilized surfaces chelated with alendronate were 68.8 ± 3.6°, 78.2 ± 1.9°, 74.8 ± 5.2°, and 76.0 ± 2.5°, respectively. The contact angle of the BMP-2 immobilized surface chelated with chitosan was significantly lower (56.2 ± 2.0°) than that of any of the other groups. BM-MSCs on the chitosan surface and BMP-2 immobilized on the surface chelated with chitosan appeared to be healthy and showed a spindle-like fibroblastic morphology. In addition, BM-MSCs on these surfaces appeared to have the ability to differentiate into bone-forming cells. We suggest that chitosan can be used as an effective calcium chelating agent for implants.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Cálcio/metabolismo , Adesão Celular/efeitos dos fármacos , Quelantes/farmacologia , Quitosana/farmacologia , Materiais Revestidos Biocompatíveis , Implantes Dentários , Durapatita/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Alicerces Teciduais , Titânio/química , Alendronato/química , Alendronato/farmacologia , Proteína Morfogenética Óssea 2/química , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Quelantes/química , Quelantes/toxicidade , Quitosana/química , Quitosana/metabolismo , Quitosana/toxicidade , Portadores de Fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Células-Tronco Mesenquimais/metabolismo , Nanopartículas , Nanotecnologia , Osteogênese/efeitos dos fármacos , Desenho de Prótese , Propriedades de Superfície
16.
Artif Organs ; 37(7): 656-62, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23639194

RESUMO

Surface coating using ceramics improves the bone bonding strength of an implant. We questioned whether a new type of glass-ceramics (BGS-7) coating (CaO-SiO2 -P2 O5 -B2 O3 ) would improve the osseointegration of Steinman pins (S-pins) both biomechanically and histomorphometrically. An in vivo study was performed using rabbits by inserting three S-pins into each iliac bone. The pins were 2.2-mm S-pins with a coating of 30-µm-thick BGS-7 and 550-nm-thick hydroxyapatite (HA), as opposed to an S-pin without coating. A tensile strength test and histomorphometrical evaluation was performed. In the 2-week group, the BGS-7 implant showed a significantly higher tensile strength than the S-pin. In the 4- and 8-week groups, the BGS-7 implants had significantly higher tensile strengths than the S-pins and HA implants. The histomorphometrical study revealed that the BGS-7 implant had a significantly higher contact ratio than the S-pin and HA implants in the 4-week group. The biomechanical and histomorphometrical tests showed that the BGS-7 coating had superior bone bonding properties than the groups without the coating from the initial stage of insertion. The BGS-7 coating of an S-pin will enhance the bone bonding strength, and there might also be an advantage in human bone bonding.


Assuntos
Pinos Ortopédicos , Cerâmica/química , Materiais Revestidos Biocompatíveis , Vidro/química , Ílio/cirurgia , Osseointegração , Animais , Fenômenos Biomecânicos , Durapatita/química , Ílio/patologia , Masculino , Desenho de Prótese , Coelhos , Propriedades de Superfície , Resistência à Tração , Fatores de Tempo
17.
Nanoscale ; 5(8): 3520-6, 2013 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-23493975

RESUMO

We demonstrated a highly efficient conducting indium tin oxide (ITO) core-TiO2 nanocrystals shell nanowire array for a photoelectrode in dye-sensitized solar cells with regard to light harvest and charge collection. The TiO2 shell layer, consisting of anatase nanocrystals of ~2 nm, were successfully formed on a single crystalline ITO nanowire prepared via a vapor transport method using repetitive TiCl4 aqueous solution treatments at 50 °C. We found that the nanocrystal size and number of Cl(-) ions remaining on the formed shell layer critically influence the dye loading properties. Moreover, these factors can be controlled by means of a post-annealing process. We also found that the dye loading and the back electron transport from the conductive ITO nanowire to the electrolyte mainly determine the final cell performance. The proposed double-shell layer structure consisting of dense and porous layers showed significantly improved cell performance.

18.
ChemSusChem ; 6(3): 449-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23417972

RESUMO

The synthesis of highly crystalline perovskite BaSnO3 nanoparticles for use as photoanode materials in dye-sensitized solar cells (DSSCs) is reported, and the photovoltaic properties of DSSCs based on BaSnO3 nanoparticles (BaSnO3 cells) are demonstrated. The resulting DSSCs exhibit remarkably rapid charge collection and a DSSC fabricated with a BaSnO3 film thickness of 43 µm leads to a high energy conversion efficiency of 5.2 %, which is one of the highest reported for ternary oxide-based DSSCs. More importantly, the BaSnO3 cells show superior charge collection in nanoparticle films compared to TiO2 cells and could offer a breakthrough in the efficiencies of DSSCs.


Assuntos
Compostos de Bário/química , Compostos de Cálcio/química , Corantes/química , Nanopartículas/química , Óxidos/química , Energia Solar , Compostos de Estanho/química , Titânio/química , Modelos Moleculares , Conformação Molecular , Porosidade
19.
Dalton Trans ; 42(12): 4278-84, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23340880

RESUMO

Herein, we report on the synthesis of phase-pure rutile walnut-like TiO(2) (W-TiO(2)) spheres composed of single-crystalline nanorod-building blocks using a surfactant-free non-aqueous acidic modified "benzyl alcohol route". Based on the various HCl concentration- and reaction time-dependent experiments, an effect of hydrochloric acid on the phase formation mechanism in a non-aqueous system is suggested. As anodes for Li-ion batteries, the W-TiO(2) sphere electrodes exhibited superior cycling performance at a rate of 0.2 C without any conducting layers coated onto the anodes; this result is attributed to their high crystallinity and large surface area.

20.
ACS Nano ; 7(2): 1027-35, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23316913

RESUMO

Ternary oxides are potential candidates as an electron-transporting material that can replace TiO2 in dye-sensitized solar cells (DSSCs), as their electronic/optical properties can be easily controlled by manipulating the composition and/or by doping. Here, we report a new highly efficient DSSC using perovskite BaSnO3 (BSO) nanoparticles. In addition, the effects of a TiCl4 treatment on the physical, chemical, and photovoltaic properties of the BSO-based DSSCs are investigated. The TiCl4 treatment was found to form an ultrathin TiO2 layer on the BSO surface, the thickness of which increases with the treatment time. The formation of the TiO2 shell layer improved the charge-collection efficiency by enhancing the charge transport and suppressing the charge recombination. It was also found that the TiCl4 treatment significantly reduces the amount of surface OH species, resulting in reduced dye adsorption and reduced light-harvesting efficiency. The trade-off effect between the charge-collection and light-harvesting efficiencies resulted in the highest quantum efficiency (i.e., short-circuit photocurrent density), leading to the highest conversion efficiency of 5.5% after a TiCl4 treatment of 3 min (cf. 4.5% for bare BSO). The conversion efficiency could be increased further to 6.2% by increasing the thickness of the BSO film, which is one of the highest efficiencies from non-TiO2-based DSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...