Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Lett ; 24(4): 354, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36168309

RESUMO

Peroxisome proliferator-activated receptor-γ (PPAR-γ) acts as a key factor in breast cancer metastasis. Notably, PPAR-γ can inhibit metalloproteinase (MMP), which is involved in cancer metastasis. Our previous study revealed that PPAR-γ was related to breast cancer metastasis. The present study aimed to investigate whether the PPAR-γ ligand 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) mediated suppression of cell invasion and reduced the expression of MMP-9 in breast cancer cells. The results indicated that CDDO reduced MMP-9 expression, cell migration and invasion of breast cancer cells by inhibiting TPA-induced phosphorylation of mitogen-activated protein kinases, and downregulating the activities of activator protein-1 and nuclear factor κB. Notably, knock-out of PPAR-γ by small interfering RNA in MCF-7 cells revealed that TPA-induced MMP-9 expression occurred through a PPAR-γ-independent pathway. These data indicated that the downregulatory effect of CDDO on MMP-9 expression was affected by a mechanism independent of PPAR-γ. In conclusion, the findings of the present study suggested that CDDO may act as a key agent in the regulation of breast cancer metastasis, suggesting CDDO as a new targeted therapy for breast cancer.

2.
Sci Rep ; 12(1): 12125, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840633

RESUMO

Sirtuin 6 (SIRT6) regulation is involved in carcinogenesis. However, its role in breast cancer (BC) metastasis remains unclear. We investigated the effects of SIRT6 on protein kinase C activator- and cytokine-mediated cancer cell invasion and migration in MCF-7 and MDA-MB-231 cells and the association between SIRT6 and matrix metalloproteinase-9 (MMP-9) expression. To assess MMP-9 and SIRT6 expression in patients, protein levels in BC tissues were analyzed. MCF-7 and MDA-MB-231 cell viability was analyzed using MTT assays. SIRT6 was silenced in both cell lines and protein secretion, expression, and mRNA levels were analyzed. Transcription factor DNA activity was investigated using luciferase assays. Matrigel invasion assays were used to assess the effects of SIRT6 in both cell lines. SIRT6 and MMP-9 expression in cancer tissues was significantly higher than in paired normal breast tissues. 12-O-tetradecanoylphorbol-13-acetate (TPA) or tumor necrosis factor-α (TNF-α) increased MMP-9 expression and cell invasion and migration, but SIRT6 knockdown abolished these effects. SIRT6 overexpression additively increased TPA- and TNF-α-induced MMP-9 expression. SIRT6 knockdown suppressed the mitogen-activated protein kinase (MAPK) signaling pathway and thus TPA- and TNF-α-induced MMP-9 expression. SIRT6 silencing suppressed TPA- and TNF-α-induced nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) expressions in both cell lines, and treatment with MAPK, NF-κB, and AP-1 inhibitors reduced MMP-9 expression. The anti-invasive effects of SIRT6 in BC cells might be mediated by suppression of MAPK phosphorylation and reduction in NF-κB and AP-1 DNA activities, leading to MMP-9 downregulation, suggesting that SIRT6 modulation has the potential to target BC metastasis.


Assuntos
Neoplasias da Mama , Sirtuínas , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Sirtuínas/biossíntese , Sirtuínas/genética , Sirtuínas/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Fator de Transcrição AP-1/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
3.
BMB Rep ; 55(2): 87-91, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34903321

RESUMO

Aurora kinase is a family of serine/threonine kinases intimately associated with mitotic progression and the development of human cancers. Studies have shown that aurora kinases are important for the protein kinase C (PKC)-induced invasion of colon cancer cells. Recent studies have shown that aurora kinase A promotes distant metastasis by inducing epithelial-to-mesenchymal transition (EMT) in colon cancer cells. However, the role of aurora kinase A in colon cancer metastasis remains unclear. In this study, we investigated the effects of aurora kinase A on PKC-induced cell invasion, migration, and EMT in human SW480 colon cancer cells. Treatment with 12-O-tetradecanoylphorbol- 13-acetate (TPA) changed the expression levels of EMT markers, increasing α-SMA, vimentin, and MMP-9 expression and decreasing E-cadherin expression, with changes in cell morphology. TPA treatment induced EMT in a PKC-dependent manner. Moreover, the inhibition of aurora kinase A by siRNAs and inhibitors (reversine and VX-680) suppressed TPA-induced cell invasion, migration, and EMT in SW480 human colon cells. Inhibition of aurora kinase A blocked TPA-induced vimentin and MMP-9 expression, and decreased E-cadherin expression. Furthermore, the knockdown of aurora kinase A decreased the transcriptional activity of NF-κB and AP-1 in PKC-stimulated SW480 cells. These findings indicate that aurora kinase A induces migration and invasion by inducing EMT in SW480 colon cancer cells. To the best of our knowledge, this is the first study that showed aurora kinase A is a key molecule in PKC-induced metastasis in colon cancer cells. [BMB Reports 2022;55(2): 87-91].


Assuntos
Aurora Quinase A , Neoplasias do Colo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Invasividade Neoplásica/genética
4.
Oncol Lett ; 22(1): 562, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34093777

RESUMO

Triptolide is a diterpenoid epoxide that is endogenously produced by the thunder god vine, Tripterygium wilfordii Hook F. Triptolide has demonstrated a variety of biological activities, including anticancer activities, in previous studies. Invasion and metastasis are the leading causes of mortality for patients with breast cancer, and the increased expression of matrix metalloproteinase-9 (MMP-9) has been shown to be associated with breast cancer invasion. Therefore, the aim of the present study was to investigate the effect of triptolide on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced cell invasion and MMP-9 expression in breast cancer cells. The expression of signal molecules was examined by western blotting, zymography and quantitative polymerase chain reaction; an electrophoretic mobility gel shift assay was also used, and cell invasiveness was measured by an in vitro Matrigel invasion assay. The MCF-7 human breast cancer cell line was treated with triptolide at the highest concentrations at which no marked cytotoxicity was evident. The results demonstrated that triptolide decreased the expression of MMP-9 through inhibition of the TPA-induced phosphorylation of extracellular signal-regulated kinase (ERK) and the downregulation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) activity. In addition, a Transwell assay revealed that triptolide reduced the ability of MCF-7 cells to invade Matrigel. These data demonstrate that the anti-invasive effect of triptolide is associated with the inhibition of ERK signaling and NF-κB and AP-1 activation, and suggest that triptolide may be a promising drug for breast cancer.

5.
Medicina (Kaunas) ; 56(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485912

RESUMO

Heme oxygenase-1 (HO-1) is highly induced in various human disease states, including cancer, indicating that HO-1 is an emerging target of cancer therapy. In this study, we investigated that the mechanisms of hemin-induced HO-1 expression and its signaling pathways in human breast cancer cell. We used MCF-7 cells, a human breast cancer cell line. Hemin increased HO-1 expression in MCF-7 cells in a dose- and time-dependent manner. Hemin enhanced HO-1 expression through the activation of c-Jun N-terminal kinases (JNK) signaling pathway. Hemin also induced activation of Nrf2, a major transcription factor of HO-1 expression. These responses in MCF-7 cells were completely blocked by pretreatment with brazilin, a HO-1 regulator. These results indicated that brazilin inhibits hemin-induced HO-1 expressions through inactivation of JNK/Nrf2 in MCF-7 cells. Thus, our findings suggest that HO-1 is an important anticancer-target of brazilin in human breast cancer.


Assuntos
Heme Oxigenase-1/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células MCF-7/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/farmacologia , Benzopiranos/farmacologia , Neoplasias da Mama/patologia , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/patologia , Hemina/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/uso terapêutico
6.
BMB Rep ; 53(4): 212-217, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31964465

RESUMO

Activation of peroxisome proliferator-activated receptor γ (PPARγ) serves as a key factor in the proliferation and invasion of breast cancer cells and is a potential therapeutic target for breast cancer. However, the mechanisms underlying this effect remain largely unknown. Heme oxygenase-1 (HO-1) is induced and overexpressed in various cancers and is associated with features of tumor aggressiveness. Recent studies have shown that HO-1 is a major downstream target of PPARγ. In this study, we investigated the effects of induction of HO-1 by PPARγ on TPAinduced MMP-9 expression and cell invasion using MCF-7 breast cancer cells. TPA treatment increased NF-κB /AP-1 DNA binding as well as MMP-9 expression. These effects were significantly blocked by 15d-PGJ2, a natural PPARγ ligand. 15d-PGJ2 induced HO-1 expression in a dose-dependent manner. Interestingly, HO-1 siRNA significantly attenuated the inhibition of TPA-induced MMP-9 protein expression and cell invasion by 15d-PGJ2. These results suggest that 15d-PGJ2 inhibits TPA-induced MMP- 9 expression and invasion of MCF-7 cells by means of a heme oxygenase-1-dependent mechanism. Therefore, PPARγ/HO-1 signaling- pathway inhibition may be beneficial for prevention and treatment of breast cancer. [BMB Reports 2020; 53(4): 212-217].


Assuntos
Neoplasias da Mama/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , NF-kappa B/antagonistas & inibidores , Prostaglandina D2/análogos & derivados , Fator de Transcrição AP-1/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/metabolismo , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , PPAR gama/metabolismo , Prostaglandina D2/farmacologia , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
7.
J Breast Cancer ; 21(1): 28-36, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29628981

RESUMO

PURPOSE: Peroxisome proliferator-activated receptor γ (PPARγ) is involved in the pathology of numerous diseases including atherosclerosis, diabetes, obesity, and cancer. Matrix metalloproteinases (MMPs) play a significant role in tissue remodeling related to various processes such as morphogenesis, angiogenesis, tissue repair, invasion, and metastasis. We investigated the effects of PPARγ on MMP expression and invasion in breast cancer cells. METHODS: MCF-7 cells were cultured and then cell viability was monitored in an MTT assay. Western blotting, gelatin zymography, real-time polymerase chain reaction, and luciferase assays were performed to investigate the effect of the synthetic PPARγ ligand troglitazone on MMP expression. Transcription factor DNA binding was analyzed by electrophoretic mobility shift assay. A Matrigel invasion assay was used to assess the effects of troglitazone on MCF-7 cells. RESULTS: Troglitazone did not affect MCF-7 cell viability. 12-O-tetradecanoylphorbol-13-acetate (TPA) induced MMP-9 expression and invasion in MCF-7 cell. However, these effects were decreased by troglitazone. TPA increased nuclear factor κB and activator protein-1 DNA binding, while troglitazone inhibited these effects. The selective PPARγ antagonist GW9662 reversed MMP-9 inhibition by troglitazone in TPA-treated MCF-7 cells. CONCLUSION: Troglitazone inhibited nuclear factor κB and activator protein-1-mediated MMP-9 expression and invasion of MCF-7 cells through a PPARγ-dependent mechanism.

8.
Oncol Lett ; 14(1): 441-446, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28693189

RESUMO

Epigallocatechin gallate (EGCG), a major constituent of green tea, has potential as a treatment for a variety of diseases, including cancer. EGCG induces apoptosis and inhibits tumorigenesis through multiple signaling pathways in breast cancer cells. ß-catenin signaling modulators could be useful in the prevention and therapy of breast cancer. However, the precise anticancer effect of EGCG through the ß-catenin signaling pathway in breast cancer is unclear. The present study investigated the association between ß-catenin expression and clinicopathological factors of breast cancer patients, and the effect of EGCG on ß-catenin expression in breast cancer cells. ß-catenin expression was analyzed according to the clinicopathological factors of 74 patients with breast cancer. All patients were females diagnosed with invasive ductal carcinoma. Western blot analysis revealed that ß-catenin was expressed at higher levels in breast cancer tissue than in normal tissue. ß-catenin expression was associated with lymph node metastasis (P=0.04), tumor-node-metastasis stage (P=0.03) and estrogen receptor status (P<0.01). EGCG decreased MDA-MB-231 cell viability and significantly downregulated the expression of ß-catenin, phosphorylated Akt and cyclin D1. Remarkably, additive effects of LY294002 and wortmannin, two phosphatidylinositol-3 kinase inhibitors, were observed. The present results suggest that EGCG inhibits the growth of MDA-MB-231 cells through the inactivation of the ß-catenin signaling pathway. Based on these promising results, EGCG may be a potential treatment for triple negative breast cancer patients.

9.
J Cell Mol Med ; 21(11): 3113-3116, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28557373

RESUMO

The biological function of NADPH oxidase (NOX) is the generation of reactive oxygen species (ROS). ROS, primarily arising from oxidative cell metabolism, play a major role in both chronological ageing and photoageing. ROS in extrinsic and intrinsic skin ageing may be assumed to induce the expression of matrix metalloproteinases. NADPH oxidase is closely linked with phosphatidylinositol 3-OH kinase (PI3K) signalling. Protein kinase C (PKC), a downstream molecule of PI3K, is essential for superoxide generation by NADPH oxidase. However, the effect of PTEN and NOX4 in replicative-aged MMPs expression has not been determined. In this study, we confirmed that inhibition of the PI3K signalling pathway by PTEN gene transfer abolished the NOX-4 and MMP-1 expression. Also, NOX-4 down-expression of replicative-aged skin cells abolished the MMP-1 expression and ROS generation. These results suggest that increase of MMP-1 expression by replicative-induced ROS is related to the change in the PTEN and NOX expression.


Assuntos
Senescência Celular/genética , Fibroblastos/metabolismo , Metaloproteinase 1 da Matriz/genética , NADPH Oxidase 4/genética , PTEN Fosfo-Hidrolase/genética , Espécies Reativas de Oxigênio/metabolismo , Adenoviridae/genética , Adenoviridae/metabolismo , Células Cultivadas , Derme/citologia , Derme/metabolismo , Fibroblastos/citologia , Regulação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Humanos , Metaloproteinase 1 da Matriz/metabolismo , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais , Transfecção
10.
Anticancer Agents Med Chem ; 17(11): 1519-1525, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-28356020

RESUMO

BACKGROUND: Fruits of Morus alba L. (mulberry) have various bioactive compounds such as polyphenols and anthocyanins and used as a herbal medicine. However, the anti-cancer effects and molecular basis have not been elucidated. METHODS: We isolated the cyanidin-3-glucoside in various cultivar of mulberry by acidified-methanol extraction methods. This molecule were compared mass spectroscopic properties by LC-MS/MS and analyzed by 1H and 13C NMR. We examined the anti-cancer effect with molecular mechanisms of the cyanidin-3-glucoside on MDA-MB-453 human breast cancer cells and xenograft animal model. RESULTS: The treatment with the mulberry cyanidin-3-glucoside decreased cell viability in a dose-dependent manner with alteration of apoptotic protein contents, and DNA fragmentation, suggesting that cells undergo apoptosis. Supporting the observations, Treatment with the cyanidin-3-glucoside showed active apoptosis by caspase-3 cleavage and DNA fragmentation through Bcl-2 and Bax pathway. Indeed, cyanidin-3-glucoside inhibits tumor growth in MDA-MB-453 cells-inoculated nude mice. Tumor growth of xenograft nude mouse was significantly reduced compared to the control group by the cyanidin-3-glucoside. CONCLUSION: The data demonstrate that cyanidin-3-glucoside isolated from mulberry induced apoptosis in breast cancer (MDA-MB-453) cells, and therefore, has a potential as an anti-cancer agent. These results show that mulberry cyanidin-3-glucoside inhibit the proliferation and growth in vitro and in vivo model and, indicating the inhibition of tumor progression.


Assuntos
Antocianinas/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Caspase 3/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Glucosídeos/farmacologia , Morus/química , Animais , Antocianinas/química , Antocianinas/metabolismo , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glucosídeos/química , Glucosídeos/metabolismo , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos ICR , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
11.
Oncol Lett ; 13(1): 243-249, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28123548

RESUMO

Docosahexaenoic acid (DHA) is an omega-3 fatty acid that is considered to have applications in cancer prevention and treatment. The beneficial effects of DHA against cancer metastasis are well established; however, the mechanisms underlying these effects in breast cancer are not clear. Cell invasion is critical for neoplastic metastasis, and involves the degradation of the extracellular matrix by matrix metalloproteinase (MMP)-9. The present study investigated the inhibitory effect of DHA on MMP-9 expression and cell invasion induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in the MCF-7 breast cancer cell line. DHA inhibited the TPA-induced activation of mitogen-activated protein kinase (MAPK) and the transcription of nuclear factor (NF)-κB, but did not inhibit the transcription of activator protein-1. DHA increased the activity of peroxisome proliferator-activated receptor (PPAR)-γ, an effect that was reversed by the application of the PPAR-γ antagonist GW9662. In addition, combined treatment with GW9662 and DHA increased NF-κB-related protein expression. These results indicate that DHA regulates MMP-9 expression and cell invasion via modulation of the MAPK signaling pathway and PPAR-γ/NF-κB activity. This suggests that DHA could be a potential therapeutic agent for the prevention of breast cancer metastasis.

12.
Oxid Med Cell Longev ; 2016: 6354261, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28003865

RESUMO

Reactive oxygen species (ROS) play a major role in both chronological aging and photoaging. ROS induce skin aging through their damaging effect on cellular constituents. However, the origins of ROS have not been fully elucidated. We investigated that ROS generation of replicative senescent fibroblasts is generated by the modulation of phosphatidylinositol 3,4,5-triphosphate (PIP3) metabolism. Reduction of the PTEN protein, which dephosphorylates PIP3, was responsible for maintaining a high level of PIP3 in replicative cells and consequently mediated the activation of the phosphatidylinositol-3-OH kinase (PI3K)/Akt pathway. Increased ROS production was blocked by inhibition of PI3K or protein kinase C (PKC) or by NADPH oxidase activating in replicative senescent cells. These data indicate that the signal pathway to ROS generation in replicative aged skin cells can be stimulated by reduced PTEN level. Our results provide new insights into skin aging-associated modification of the PI3K/NADPH oxidase signaling pathway and its relationship with a skin aging-dependent increase of ROS in human dermal fibroblasts.


Assuntos
Senescência Celular , Fibroblastos/enzimologia , Estresse Oxidativo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento da Pele , Pele/enzimologia , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Ativação Enzimática , Fibroblastos/patologia , Humanos , Recém-Nascido , Masculino , NADPH Oxidases/metabolismo , PTEN Fosfo-Hidrolase/genética , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais , Pele/patologia , Fatores de Tempo , Transfecção
13.
Oncol Rep ; 34(2): 803-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26044736

RESUMO

The Aurora kinase family of serine/threonine kinases are known to be crucial for cell cycle control. Aurora kinases are considered a target of anticancer drugs. However, few studies have assessed the effect of Aurora kinases in breast cancer. In the present study, to determine whether Aurora kinases play a role in oncogenic actions of protein kinase C (PKC), we investigated the effect of Aurora kinases on PKC-induced invasion and MMP-9 expression using breast cancer cells. Treatment of MCF-7 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced the upregulation and phosphorylation of Aurora kinases via the MAPK signaling pathway. Moreover, the inhibition of Aurora kinases by their siRNAs and inhibitors suppressed TPA-induced cell invasion and expression of MMP-9 by inhibiting the activation of NF-κB/AP-1, major transcription factors for MMP-9 expression in MCF-7 cells. These results suggested that Aurora kinases mediate PKC-MAPK signal to NF-κB/AP-1 with increasing MMP-9 expression and invasion of MCF-7 cells. To the best of our knowledge, this is the first study to show that Aurora kinases are key molecules in PKC-induced invasion in breast cancer cells.


Assuntos
Aurora Quinase A/biossíntese , Aurora Quinase B/biossíntese , Neoplasias da Mama/genética , Metaloproteinase 9 da Matriz/biossíntese , Proteína Quinase C/biossíntese , Aurora Quinase A/genética , Aurora Quinase B/genética , Neoplasias da Mama/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Metaloproteinase 9 da Matriz/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , NF-kappa B/biossíntese , NF-kappa B/genética , Invasividade Neoplásica/genética , Proteína Quinase C/genética , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia
14.
Eur J Pharmacol ; 764: 79-86, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26101063

RESUMO

Invasion and metastasis are among the main causes of death in patients with malignant tumors. Fisetin (3,3',4',7-tetrahydroxyflavone), a natural flavonoid found in the smoke tree (Cotinus coggygria), is known to have antimetastatic effects on prostate and lung cancers; however, the effect of fisetin on breast cancer metastasis is unknown. The aim of this study was to determine the anti-invasive activity of fisetin in human breast cancer cells. Matrix metalloproteinase (MMP)-9 is a major component facilitating the invasion of many cancer tumor cell types, and thus the inhibitory effect of fisetin on MMP-9 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated human breast cancer cells was investigated in this study. Fisetin significantly attenuated TPA-induced cell invasion in MCF-7 human breast cancer cells, and was found to inhibit the activation of the PKCα/ROS/ERK1/2 and p38 MAPK signaling pathways. This effect was furthermore associated with reduced NF-κB activation, suggesting that the anti-invasive effect of fisetin on MCF-7 cells may result from inhibited TPA activation of NF-κB and reduced TPA activation of PKCα/ROS/ERK1/2 and p38 MAPK signals, ultimately leading to the downregulation of MMP-9 expression. Our findings indicate the role of fisetin in MCF-7 cell invasion, and clarify the underlying molecular mechanisms of this role, suggesting fisetin as a potential chemopreventive agent for breast cancer metastasis.


Assuntos
Neoplasias da Mama/patologia , Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Flavonóis , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Invasividade Neoplásica , Proteína Quinase C-alfa/metabolismo , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...