Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(3): 635-652, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38299355

RESUMO

BACKGROUND: After subarachnoid hemorrhage (SAH), neutrophils are deleterious and contribute to poor outcomes. Neutrophils can produce neutrophil extracellular traps (NETs) after ischemic stroke. Our hypothesis was that, after SAH, neutrophils contribute to delayed cerebral ischemia (DCI) and worse outcomes via cerebrovascular occlusion by NETs. METHODS: SAH was induced via endovascular perforation, and SAH mice were given either a neutrophil-depleting antibody, a PAD4 (peptidylarginine deiminase 4) inhibitor (to prevent NETosis), DNAse-I (to degrade NETs), or a vehicle control. Mice underwent daily neurological assessment until day 7 and then euthanized for quantification of intravascular brain NETs (iNETs). Subsets of mice were used to quantify neutrophil infiltration, NETosis potential, iNETs, cerebral perfusion, and infarction. In addition, NET markers were assessed in the blood of aneurysmal SAH patients. RESULTS: In mice, SAH led to brain neutrophil infiltration within 24 hours, induced a pro-NETosis phenotype selectively in skull neutrophils, and caused a significant increase in iNETs by day 1, which persisted until at least day 7. Neutrophil depletion significantly reduced iNETs, improving cerebral perfusion, leading to less neurological deficits and less incidence of DCI (16% versus 51.9%). Similarly, PAD4 inhibition reduced iNETs, improved neurological outcome, and reduced incidence of DCI (5% versus 30%), whereas degrading NETs marginally improved outcomes. Patients with aneurysmal SAH who developed DCI had elevated markers of NETs compared with non-DCI patients. CONCLUSIONS: After SAH, skull-derived neutrophils are primed for NETosis, and there are persistent brain iNETs, which correlated with delayed deficits. The findings from this study suggest that, after SAH, neutrophils and NETosis are therapeutic targets, which can prevent vascular occlusion by NETs in the brain, thereby lessening the risk of DCI. Finally, NET markers may be biomarkers, which can predict which patients with aneurysmal SAH are at risk for developing DCI.


Assuntos
Isquemia Encefálica , Transtornos Cerebrovasculares , Armadilhas Extracelulares , Hemorragia Subaracnóidea , Humanos , Camundongos , Animais , Hemorragia Subaracnóidea/complicações , Neutrófilos/metabolismo , Isquemia Encefálica/etiologia , Isquemia Encefálica/prevenção & controle , Transtornos Cerebrovasculares/complicações
2.
Sci Rep ; 13(1): 15841, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740008

RESUMO

Despite efforts to identify modulatory neuroprotective mechanisms of damaging ischemic stroke cascade signaling, a void remains on an effective potential therapeutic. The present study defines neuroprotection by very long-chain polyunsaturated fatty acid (VLC-PUFA) Elovanoid (ELV) precursors C-32:6 and C-34:6 delivered intranasally following experimental ischemic stroke. We demonstrate that these precursors improved neurological deficit, decreased T2WI lesion volume, and increased SMI-71 positive blood vessels and NeuN positive neurons, indicating blood-brain barrier (BBB) protection and neurogenesis modulated by the free fatty acids (FFAs) C-32:6 and C-34:6. Gene expression revealed increased anti-inflammatory and pro-homeostatic genes and decreases in expression of pro-inflammatory genes in the subcortex. Additionally, the FFAs elicit a comprehensive downregulation of inflammatory microglia/monocyte-derived macrophages and astrocyte-associated genes in the subcortical region. Functional analysis reveals inhibition of immune-related pathways and production of upstream molecules related to detrimental signaling events in post-stroke acute and subacute phases.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Ácidos Graxos não Esterificados , Neuroproteção , Acidente Vascular Cerebral/genética , Astrócitos
3.
ACS Sens ; 8(3): 974-993, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36897225

RESUMO

Low temperature plasma technology is proving to be at the frontier of emerging medical technologies with real potential to overcome escalating healthcare challenges including antimicrobial and anticancer resistance. However, significant improvements in efficacy, safety, and reproducibility of plasma treatments need to be addressed to realize the full clinical potential of the technology. To improve plasma treatments recent research has focused on integrating automated feedback control systems into medical plasma technologies to maintain optimal performance and safety. However, more advanced diagnostic systems are still needed to provide data into feedback control systems with sufficient levels of sensitivity, accuracy, and reproducibility. These diagnostic systems need to be compatible with the biological target and to also not perturb the plasma treatment. This paper reviews the state-of-the-art electronic and optical sensors that might be suitable to address this unmet technological need, and the steps needed to integrate these sensors into autonomous plasma systems. Realizing this technological gap could facilitate the development of next-generation medical plasma technologies with strong potential to yield superior healthcare outcomes.


Assuntos
Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio , Reprodutibilidade dos Testes , Eletrônica
4.
Methods Mol Biol ; 2616: 83-96, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715930

RESUMO

Laser speckle contrast imaging (LSCI) offers the ability to measure relative cerebral blood flow (CBF) through the intact skull in mice. LSCI can be used to measure changes in cortical CBF in the middle cerebral artery occlusion/reperfusion (MCAo/R) stroke model. However, because conventional LSCI approaches are designed to image from above, uninterrupted measurement of CBF during the MCAo/R procedure is not possible due to the need to repeatedly reposition the mouse between prone and supine positions. We present a modified method to perform LSCI measurement from beneath the surgical preparation, thus allowing uninterrupted measurement of relative CBF from baseline through re-introduction of blood flow. We provide a 3D printable imaging platform and corresponding head frame, as well as methods to improve skull clarity in young and aged mice.


Assuntos
Infarto da Artéria Cerebral Média , Acidente Vascular Cerebral , Camundongos , Animais , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Imagem de Contraste de Manchas a Laser , Hemodinâmica , Circulação Cerebrovascular/fisiologia , Fluxometria por Laser-Doppler/métodos
5.
Transl Stroke Res ; 13(5): 725-735, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35157256

RESUMO

Delayed cerebral ischemia (DCI) continues to be a sequela of aneurysmal subarachnoid hemorrhage (aSAH) that carries significant morbidity and mortality. Aside from nimodipine, no therapeutic agents are available to reduce the incidence of DCI. Pathophysiologic mechanisms contributing to DCI are poorly understood, but accumulating evidence over the years implicates several factors. Those have included microvessel vasoconstriction, microthrombosis, oxidative tissue damage, and cortical spreading depolarization as well as large vessel vasospasm. Common to these processes is red blood cell leakage into the cerebrospinal fluids (CSF) and subsequent lysis which releases hemoglobin, a central instigator in these events. This has led to the hypothesis that early blood removal may improve clinical outcome and reduce DCI. This paper will provide a narrative review of the evidence of hemoglobin as an instigator of DCI. It will also elaborate on available human data that discuss blood clearance and CSF drainage as a treatment of DCI. Finally, we will address a recent novel device that is currently being tested, the Neurapheresis CSF Management System™. This is an automated dual-lumen lumbar drainage system that has an option to filter CSF and return it to the patient.


Assuntos
Isquemia Encefálica , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/complicações , Hemoglobinas , Humanos , Incidência , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/terapia , Vasoespasmo Intracraniano/complicações
6.
Asian Spine J ; 15(6): 761-768, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34000798

RESUMO

STUDY DESIGN: Retrospective study. PURPOSE: To compare the clinical and radiological results of minimally invasive spine surgery (MISS) and open posterior instrumentation surgery for the treatment of unstable burst fractures. OVERVIEW OF LITERATURE: MISS has exhibited postoperative outcomes similar to those obtained using open posterior instrumentation in various spine diseases. There remains no consensus regarding the use of MISS in the treatment of unstable burst fracture. METHODS: We enrolled 40 patients who underwent either MISS (M group, 20 patients) or open posterior instrumentation surgery (O group, 20 patients) for the treatment of traumatic unstable burst fractures. Clinical outcomes were evaluated based on postoperative back pain, operation time, blood loss, hospital stay duration, and perioperative complications. For radiologic evaluation, preoperative magnetic resonance imaging and plain radiography were performed before and after the surgery to evaluate the changes in the kyphotic angle and fracture union. RESULTS: The change in the kyphotic angle was -8.2°±5.8° in the M group and -8.0°±7.8° in the O group. No significant difference was noted in terms of the change in the kyphotic angle (p=0.94, t-test) after 12 months of surgery. The Visual Analog Scale score was 1.5±0.7 points in the M group, while it was 5.2±1.4 points in the O group. In the M group, back pain has significantly decreased (p<0.01, t-test). The estimated blood loss was 195.5 mL in the M group and 1,077.5 mL in the O group; the operation time was significantly decreased in the O group from 290.7 to 120.7 minutes in the M group (p<0.05, t-test) (p=0.36, t-test). The average duration of hospital stay was 36.0 days in the M group and 41.9 days in the O group (p=0.36, t-test). CONCLUSIONS: For the treatment of unstable burst fractures, MISS showed significant differences in terms of postoperative back pain, operation time, and blood loss as compared to open posterior instrumentation surgery.

7.
J Neurosci Methods ; 360: 109228, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052289

RESUMO

BACKGROUND: Brain temperature is a strong determinant of ischemic stroke injury. For this reason, tight management of brain or body temperature (Tcore) in experimental rodent stroke models is recommended to improve the rigor and reproducibility of outcomes. However, methods for managing Tcore during and after stroke vary widely in approach and effectiveness. NEW METHOD: We developed a low-cost warm ambient air cage (WAAC) system to provide improved temperature control during the intra-ischemic and post-ischemic recovery periods. The system is incorporated into standard holding cages for maintaining Tcore during the intra-ischemic period as well as for several hours into the recovery period. RESULTS AND COMPARISON WITH EXISTING METHODS: We compared the WAAC system with a commonly used heat support method, consisting of a cage on a heating pad. Both heat support systems were evaluated for the middle cerebral artery occlusion (MCAo) stroke model in mice. The WAAC system provided improved temperature control (more normothermic Tcore and less Tcore variation) during the intra- ischemic period (60 min) and post-ischemic period (3 h). Mean infarct volume was not statistically different by heat support system, however, standard deviation was 54 % lower in the WAAC system group. CONCLUSIONS: Mice and other small rodents are highly vulnerable to heat loss during and after the MCAo procedure. The WAAC system provides more precise and controlled Tcore maintenance compared with frequently used induction heating methods in mice undergoing the MCAo stroke model. The improved temperature control should enhance experimental rigor and reduce the number of experimental animals needed.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Temperatura Corporal , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média , Camundongos , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/terapia , Temperatura
8.
Sci Adv ; 6(22): eaaz9386, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32766446

RESUMO

Formation of bacterial biofilms on solid surfaces within a fluid starts when bacteria attach to the substrate. Understanding environmental factors affecting the attachment and the early stages of the biofilm development will help develop methods of controlling the biofilm growth. Here, we show that biofilm formation is strongly affected by the flows in thin layers of bacterial suspensions controlled by surface waves. Deterministic wave patterns promote the growth of patterned biofilms, while wave-driven turbulent motion discourages patterned attachment of bacteria. Strong biofilms form under the wave antinodes, while inactive bacteria and passive particles settle under nodal points. By controlling the wavelength, its amplitude, and horizontal mobility of the wave patterns, one can shape the biofilm and either enhance the growth or discourage the formation of the biofilm. The results suggest that the deterministic wave-driven transport channels, rather than hydrodynamic forces acting on microorganisms, determine the preferred location for the bacterial attachment.

9.
CNS Neurosci Ther ; 26(11): 1155-1167, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32757264

RESUMO

AIMS: Mesencephalic astrocyte-derived neurotrophic factor (MANF) is a secretory neurotrophic factor protein that promotes repair after neuronal injury. The microglia cell surface receptor (triggering receptor expressed on myeloid cells-2; TREM2) regulates the production of pro- and antiinflammatory mediators after stroke. Here, we study MANF and TREM2 expression after middle cerebral artery occlusion (MCAo) and explore if docosahexaenoic acid (DHA) treatment exerts a potentiating effect. METHODS: We used 2 hours of the MCAo model in rats and intravenously administered DHA or vehicle at 3 hours after the onset of MCAo. Neurobehavioral assessment was performed on days 1, 3, 7, and 14; MANF and TREM2 expression was measured by immunohistochemistry and Western blotting. RESULTS: MANF was upregulated in neurons and astrocytes on days 1, 7, and 14, and TREM2 was expressed on macrophages in the ischemic penumbra and dentate gyrus (DG) on days 7 and 14. DHA improved neurobehavioral recovery, attenuated infarct size on days 7 and 14, increased MANF and decreased TREM2 expression in ischemic core, penumbra, DG, and enhanced neurogenesis on Day 14. CONCLUSION: MANF and TREM2 protein abundance is robustly increased after MCAo, and DHA treatment potentiated MANF abundance, decreased TREM2 expression, improved neurobehavioral recovery, reduced infarction, and provided enhanced neuroprotection.


Assuntos
Isquemia Encefálica/metabolismo , Ácidos Docosa-Hexaenoicos/administração & dosagem , AVC Isquêmico/metabolismo , Glicoproteínas de Membrana/biossíntese , Fatores de Crescimento Neural/biossíntese , Neurogênese/efeitos dos fármacos , Receptores Imunológicos/biossíntese , Administração Intravenosa , Animais , Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/metabolismo , AVC Isquêmico/tratamento farmacológico , Masculino , Glicoproteínas de Membrana/antagonistas & inibidores , Fatores de Crescimento Neural/agonistas , Neurogênese/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores Imunológicos/antagonistas & inibidores
10.
Stroke ; 51(7): 2249-2254, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32539672

RESUMO

BACKGROUND AND PURPOSE: Delayed neurological deficits are a devastating consequence of subarachnoid hemorrhage (SAH), which affects about 30% of surviving patients. Although a very serious concern, delayed deficits are understudied in experimental SAH models; it is not known whether rodents recapitulate the delayed clinical decline seen in SAH patients. We hypothesized that mice with SAH develop delayed functional deficits and that microthrombi and infarction correlate with delayed decline. METHODS: Adult C57BL/6J mice of both sexes were subjected to endovascular perforation to induce SAH. Mice were allowed to survive for up to 1 week post-ictus and behavioral performance was assessed daily. Postmortem microthrombi, large artery diameters (to assess vasospasm), and infarct volume were measured. These measures were analyzed for differences between SAH mice that developed delayed deficits and SAH mice that did not get delayed deficits. Correlation analyses were performed to identify which measures correlated with delayed neurological deficits, sex, and infarction. RESULTS: Twenty-three percent of males and 47% of females developed delayed deficits 3 to 6 days post-SAH. Female mice subjected to SAH had a significantly higher incidence of delayed deficits than male mice with SAH. Mice that developed delayed deficits had significantly more microthrombi and larger infarct volumes than SAH mice that did not get delayed deficits. Microthrombi positively correlated with infarct volume, and both microthrombi and infarction correlated with delayed functional deficits. Vasospasm did not correlate with either infarction delayed functional deficits. CONCLUSIONS: We discovered that delayed functional deficits occur in mice following SAH. Sex differences were seen in the prevalence of delayed deficits. The mechanism by which microthrombi cause delayed deficits may be via formation of infarcts.


Assuntos
Comportamento Animal , Infarto Cerebral/etiologia , Trombose Intracraniana/etiologia , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Neurosci Res ; 98(2): 312-324, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31630455

RESUMO

Recent advances in three-dimensional (3D) fluorescence microscopy offer the ability to image the entire vascular network in entire organs, or even whole animals. However, these imaging modalities rely on either endogenous fluorescent reporters or involved immunohistochemistry protocols, as well as optical clearing of the tissue and refractive index matching. Conversely, X-ray-based 3D imaging modalities, such as micro CT, can image non-transparent samples, at high resolution, without requiring complicated or expensive immunolabeling and clearing protocols, or fluorescent reporters. Here, we compared two "homemade" barium-based contrast agents to the field standard, lead-containing Microfil, for micro-computed tomography (micro CT) imaging of the adult mouse cerebrovasculature. The perfusion pressure required for uniform vessel filling was significantly lower with the barium-based contrast agents compared to the polymer-based Microfil. Accordingly, the barium agents showed no evidence of vascular distension or rupture, common problems associated with Microfil. Compellingly, perfusion of an aqueous BaCl2 /gelatin mixture yielded equal or superior visualization of the cerebrovasculature by micro CT compared to Microfil. However, phosphate-containing buffers and fixatives were incompatible with BaCl2 due to the formation of unwanted precipitates. X-ray attenuation of the vessels also decreased overtime, as the BaCl2 appeared to gradually diffuse into surrounding tissues. A second, unique formulation composed of BaSO4 microparticles, generated in-house by mixing BaCl2 and MgSO4 , suffered none of these drawbacks. These microparticles, however, were unable to pass small diameter capillary vessels, conveniently labeling only the arterial cerebrovasculature. In summary, we present an affordable, robust, low pressure, non-toxic, and straightforward methodology for 3D visualization of the cerebrovasculature.


Assuntos
Bário , Circulação Cerebrovascular/fisiologia , Imageamento Tridimensional/métodos , Microtomografia por Raio-X/métodos , Animais , Meios de Contraste , Camundongos
12.
Phys Chem Chem Phys ; 21(35): 19327-19341, 2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31453592

RESUMO

The mechanisms of plasma in medicine are broadly attributed to plasma-derived reactive oxygen and nitrogen species (RONS). In order to exert any intracellular effects, these plasma-derived RONS must first traverse a major barrier in the cell membrane. The cell membrane lipid composition, and thereby the magnitude of this barrier, is highly variable between cells depending on type and state (e.g. it is widely accepted that healthy and cancerous cells have different membrane lipid compositions). In this study, we investigate how plasma-derived RONS interactions with lipid membrane components can potentially be exploited in the future for treatment of diseases. We couple phospholipid vesicle experiments, used as simple cell models, with molecular dynamics (MD) simulations of the lipid membrane to provide new insights into how the interplay between phospholipids and cholesterol may influence the response of healthy and diseased cell membranes to plasma-derived RONS. We focus on the (i) lipid tail saturation degree, (ii) lipid head group type, and (iii) membrane cholesterol fraction. Using encapsulated molecular probes, we study the influence of the above membrane components on the ingress of RONS into the vesicles, and subsequent DNA damage. Our results indicate that all of the above membrane components can enhance or suppress RONS uptake, depending on their relative concentration within the membrane. Further, we show that higher RONS uptake into the vesicles does not always correlate with increased DNA damage, which is attributed to ROS reactivity and lifetime. The MD simulations indicate the multifactorial chemical and physical processes at play, including (i) lipid oxidation, (ii) lipid packing, and (iii) lipid rafts formation. The methods and findings presented here provide a platform of knowledge that could be leveraged in the development of therapies relying on the action of plasma, in which the cell membrane and oxidative stress response in cells is targeted.


Assuntos
Dano ao DNA , Lipídeos de Membrana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Colesterol/química , Lipídeos de Membrana/química , Simulação de Dinâmica Molecular , Fosfolipídeos/química , Espécies Reativas de Nitrogênio/sangue , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/sangue , Vesículas Transportadoras/química
14.
Stroke ; 49(10): 2536-2540, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30355099

RESUMO

Background and Purpose- VWF (von Willebrand factor) strings mediate spontaneous platelet adhesion in the vascular lumen, which may lead to microthrombi formation and contribute to stroke pathology. However, the mechanism of VWF string attachment at the endothelial surface is unknown. We tested the novel hypothesis that VWF strings are tethered to the endothelial surface through an interaction between extracellular vimentin and the A2 domain of VWF. We further explored the translational value of blocking this interaction in a model of ischemic stroke. Methods- Human endothelial cells and pressurized cerebral arteries were stimulated with histamine to elicit VWF string formation. Recombinant proteins and antibodies were used to block VWF string formation. Mice underwent transient middle cerebral artery occlusion with reperfusion. Just before recanalization, mice were given either vehicle or A2 protein (recombinant VWF A2 domain) to disrupt the vimentin/VWF interaction. Laser speckle contrast imaging was used to monitor cortical perfusion. Results- Pressurized cerebral arteries produced VWF strings following histamine stimulation, which were reduced in arteries from Vim KO (vimentin knockout) mice. VWF string formation was significantly reduced in endothelial cells incubated with A2 protein or antivimentin antibodies. Lastly, A2 protein treatment significantly improved cortical reperfusion after middle cerebral artery occlusion. Conclusions- We provide the first direct evidence of cerebral VWF strings and demonstrate that extracellular vimentin significantly contributes to VWF string formation via A2 domain binding. Lastly, we show that pharmacologically targeting the vimentin/VWF interaction through the A2 domain can promote improved reperfusion after ischemic stroke. Together, these studies demonstrate the critical role of VWF strings in stroke pathology and offer new therapeutic targets for treatment of ischemic stroke.


Assuntos
Plaquetas/metabolismo , Acidente Vascular Cerebral/metabolismo , Vimentina/metabolismo , Fator de von Willebrand/metabolismo , Animais , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Camundongos , Adesividade Plaquetária/fisiologia , Estresse Mecânico
15.
Nature ; 561(7723): 331-337, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30185905

RESUMO

Successful T cell immunotherapy for brain cancer requires that the T cells can access tumour tissues, but this has been difficult to achieve. Here we show that, in contrast to inflammatory brain diseases such as multiple sclerosis, where endothelial cells upregulate ICAM1 and VCAM1 to guide the extravasation of pro-inflammatory cells, cancer endothelium downregulates these molecules to evade immune recognition. By contrast, we found that cancer endothelium upregulates activated leukocyte cell adhesion molecule (ALCAM), which allowed us to overcome this immune-evasion mechanism by creating an ALCAM-restricted homing system (HS). We re-engineered the natural ligand of ALCAM, CD6, in a manner that triggers initial anchorage of T cells to ALCAM and conditionally mediates a secondary wave of adhesion by sensitizing T cells to low-level ICAM1 on the cancer endothelium, thereby creating the adhesion forces necessary to capture T cells from the bloodstream. Cytotoxic HS T cells robustly infiltrated brain cancers after intravenous injection and exhibited potent antitumour activity. We have therefore developed a molecule that targets the delivery of T cells to brain cancer.

16.
Mol Neurobiol ; 55(8): 7090-7106, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29858774

RESUMO

Docosahexaenoic acid (DHA) and neuroprotectin D1 (NPD1) are neuroprotective after experimental ischemic stroke. To explore underlying mechanisms, SD rats underwent 2 h of middle cerebral artery occlusion (MCAo) and treated with DHA (5 mg/kg, IV) or NPD1 (5 µg/per rat, ICV) and vehicles 1 h after. Neuro-behavioral assessments was conducted on days 1, 2, and 3, and on week 1, 2, 3, or 4. BrdU was injected on days 4, 5, and 6, immunohistochemistry was performed on week 2 or 4, MRI on day 7, and lipidomic analysis at 4 and 5 h after onset of stroke. DHA improved short- and long-term behavioral functions and reduced cortical, subcortical, and total infarct volumes (by 42, 47, and 31%, respectively) after 2 weeks and reduced tissue loss by 50% after 4 weeks. DHA increased the number of BrdU+/Ki-67+, BrdU+/DCX+, and BrdU+/NeuN+ cells in the cortex, subventricular zone, and dentate gyrus and potentiated NPD1 synthesis in the penumbra at 5 h after MCAo. NPD1 improved behavior, reduced lesion volumes, protected ischemic penumbra, increased NeuN, GFAP, SMI-71-positive cells and vessels, axonal regeneration in the penumbra, and attenuated blood-brain barrier (BBB) after MCAo. We conclude that docosanoid administration increases neurogenesis and angiogenesis, activates NPD1 synthesis in the penumbra, and diminishes BBB permeability, which correlates to long-term neurobehavioral recovery after experimental ischemic stroke.


Assuntos
Comportamento Animal , Barreira Hematoencefálica/patologia , Isquemia Encefálica/patologia , Ácidos Graxos/farmacologia , Neovascularização Fisiológica , Neurogênese , Acidente Vascular Cerebral/patologia , Animais , Axônios/patologia , Isquemia Encefálica/complicações , Ácidos Docosa-Hexaenoicos/metabolismo , Proteína Duplacortina , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Permeabilidade , Ratos Sprague-Dawley , Acidente Vascular Cerebral/complicações , Análise de Sobrevida
17.
Trends Biotechnol ; 36(6): 594-602, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28843839

RESUMO

Electrically generated cold atmospheric plasma is being intensively researched for novel applications in biology and medicine. Significant attention is being given to reactive oxygen and nitrogen species (RONS), initially generated upon plasma-air interactions, and subsequently delivered to biological systems. Effects of plasma exposure are observed to millimeter depths within tissue. However, the exact nature of the initial plasma-tissue interactions remains unknown, including RONS speciation and delivery depth, or how plasma-derived RONS intervene in biological processes. Herein, we focus on current research using tissue and cell models to learn more about the plasma delivery of RONS into biological environments. We argue that this research is vital in underpinning the knowledge required to realize the full potential of plasma in biology and medicine.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Modelos Biológicos , Gases em Plasma/farmacologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Simulação por Computador , Desinfecção/instrumentação , Desinfecção/métodos , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Espécies Reativas de Nitrogênio/agonistas , Espécies Reativas de Oxigênio/agonistas , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
18.
Sci Rep ; 7(1): 3854, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634331

RESUMO

Despite growing interest in the application of atmospheric plasma jets as medical treatment strategies, there has been comparatively little research on the potential genotoxic and cytotoxic effects of plasma jet treatment. In this study, we have employed the cytokinesis block micronucleus cytome (CBMN-Cyt) assay with WIL2-NS B lymphoblastoid cells to test the potential genotoxicity, as well as the cytotoxicity, of toxic species generated in cell culture media by an argon (Ar) plasma jet. Elevated levels of cell death (necrosis) and occurrence of chromosomal damage (micronuclei MN, nculeoplasmic bridge NPBs and nuclear bus, Nbuds) were observed when cells were exposed to plasma jet-treated media. These results provide a first insight into how we might measure the genotoxic and cytotoxic effect of plasma jet treatments (both indirect and direct) in dividing human cells.


Assuntos
Argônio/farmacologia , Meios de Cultivo Condicionados/farmacologia , Citocinese , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Testes para Micronúcleos , Análise de Variância , Linhagem Celular , Humanos , Linfócitos/imunologia , Testes para Micronúcleos/métodos
19.
Cell Death Differ ; 24(6): 1091-1099, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28430183

RESUMO

Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS. Iduna, which was increased by the lipid mediator, requires the presence of the poly(ADP-ribose) (PAR) sites. Moreover, astrocytes and neurons in the penumbra display an enhanced abundance of Iduna, followed by remarkable neurological protection when DHA, a precursor of NPD1, is systemically administered 1 h after 2 h of ischemic stroke. These findings provide a conceptual advancement for survival of neural cells undergoing challenges to homeostasis because a lipid mediator, made 'on demand,' modulates the abundance of a critically important protein for cell survival.


Assuntos
Isquemia Encefálica/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Estresse Oxidativo , Transdução de Sinais , Acidente Vascular Cerebral/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Isquemia Encefálica/fisiopatologia , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Ubiquitina-Proteína Ligases/genética , Regulação para Cima
20.
Biochim Biophys Acta ; 1862(2): 284-95, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26675527

RESUMO

Our recent study demonstrated that an amyloid-ß binding molecule, BTA-EG4, increases dendritic spine number via Ras-mediated signaling. To potentially optimize the potency of the BTA compounds, we synthesized and evaluated an amyloid-ß binding analog of BTA-EG4 with increased solubility in aqueous solution, BTA-EG6. We initially examined the effects of BTA-EG6 on dendritic spine formation and found that BTA-EG6-treated primary hippocampal neurons had significantly increased dendritic spine number compared to control treatment. In addition, BTA-EG6 significantly increased the surface level of AMPA receptors. Upon investigation into the molecular mechanism by which BTA-EG6 promotes dendritic spine formation, we found that BTA-EG6 may exert its effects on spinogenesis via RasGRF1-ERK signaling, with potential involvement of other spinogenesis-related proteins such as Cdc42 and CDK5. Taken together, our data suggest that BTA-EG6 boosts spine and synapse number, which may have a beneficial effect of enhancing neuronal and synaptic function in the normal healthy brain.


Assuntos
Benzotiazóis/química , Benzotiazóis/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas ras/metabolismo , ras-GRF1/metabolismo , Compostos de Anilina/química , Compostos de Anilina/farmacologia , Animais , Células Cultivadas , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/ultraestrutura , Etilenoglicol/química , Etilenoglicol/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...